ECE 2574: Data Structures and Algorithms -
Stack ADT

C. L. Wyatt

Today we will define and use one of the most fundamental
data structures in computing, a stack.

Warmup

Introduction to stacks
Example: permutations
Example: image processing

vV VvyYyyey

A stack is a list in which all insertions and deletions are
done at one end, denoted the top.

The basic stack ADT has 7 operations.

create a stack
destroy a stack
empty query

insert (push)

remove (pop)
retrieve (peek or top)

vV VvVvVvYyVvYVvyy

In the stack, all access is limited to the top.

A stack is also called a Last-In-First-Out (LIFO) Queue.

Example of using a stack: Entering text

C:\> SomeCommnad

C:\> SomeComm

C:\> SomeCommand

nw|io|3|o |[O|lo |3 |3 |5 | |a

mijo |3 |0 |Oflo |3 |3

mnio|3|o |Olo |3 |3 || |a

empty

Basic stack operations are similar to the Bag ADT.

// Create an empty stack
+createStack()

// Destroy a stack
+destroyStack

//Determine if a stack is empty

//Precondition: None

//Postcondition: returns true is the stack is empty,
// else false

+isEmpty(): boolean

Inserting onto a stack is called a push.

// adds new item to the top of the stack

// Precondition: valid stack

// Postcondition: stack has new item at top,
// stack is 1 larger

// returns true/false if push succeeds/fails
+push(in newItem:StackItemType): boolean

Removing an item from the stack is called a pop.

// remove the top item in the stack

// Precondition: valid stack

// Postcondition: stack is 1 smaller, top item removed
// returns true/false if push succeeds/fails

+pop() : boolean

// retrieve and remove the top item in the stack

// Precondition: valid stack

// Postcondition: stack is 1 smaller, top item removed
// returns true/false if push succeeds/fails

+pop (out stackTop:StackItemType): boolean

Retrieving from the stack top without removing is
sometimes called peek.

// retrieves the item currently at the stack top.
// Precondition: valid stack

// Postcondition: places stack top in stackTop

// output returns true/false if push succeeds/fails
+getTop (outstackTop:StackItemType) : boolean

Warmup

Determine the stack contents after the operation on each line is
executed. Be sure to indicate the top of the stack.

stack<int> s;
s.push(1);
s.push(2);
s.popQ);
s.popQ);
s.push(34);
s.push(-12);
s.push (15);
s.pop(O);
s.push(100);
s.push(0);

© 00 N O WwN -

= o
= O

Of the 45 who submitted, 91% correct.

Stacks are prevalent in computer systems.

At a low-level stacks are used to store local variables, function
arguments, return addresses, etc. Many algorithms are conveniently
described in terms of a stack concept.

Stacks are called push-down lists in automata theory.

Example: creating permutations

input switch output

stack

Example: creating permutations

Example: creating permutations

copy (push/pop)

Example: creating permutations

push

Example: creating permutations

Example: creating permutations

copy (push/pop)

Example: creating permutations

pop

Example: creating permutations

pop

In class exercise: creating permutations

Given an input (left-to-right): 4, 3, 2, 1
Can you create the permutation (left-to-right): 1, 4, 2, 37

What sequence of push/pops would perform the permutation?

Another real world problem where the stack solution is
particularly elegant is region-growing in images.

Also called flood-fill.

File Edit View Image Colors Help

[

0

The region growing problem can be described as follows.

Given a two-dimensional array of pixels, and the starting coordinates
of a pixel, find all pixels that are similar.

[T TT T

First, lets define two ADT's to describe an Image and a
position in the Image.

Position ADT

-row
-column

Image ADT
-Image

+CreateImage ()

+Right () : Position +DestroyImage ()

+Left () :Position

+GetPixelLabel ()

+Top () : Position +LabelPixel ()

+Bottom() : Position

|+GetPixe1Labe1(in pos:Position): ImageLabel

|+Labe1Pixe1(in pos:Position, in label:Imagelabel)

The similarity can be described as the pixel being
considered is the same color as the start pixel.

Function isSimilar(
in I:Image,
in pl:Position,
in p2:Position) :boolean

if(I.GetPixellLabel(pl) ==
I.GetPixelLabel(p2))
return true
else
return false
endif
endfunction

Keeping track of which positions need to be checked for
similarity can be done using a stack.

First we define a current pixel we are visiting. Then, we need to
check its 4 neighbors.

So, we push all 4 neighbor positions onto a stack,

» if they are similar to current and
> if they are not already in region

Example

. stack (empty)

Example

. stack (empty)

Example

TR

RR

BR

RR

TR

BR

stack (empty)

Example

TR

BR

TR

BR

L

T

B

stack (empty)

Example

BR

L

T

B

stack (empty)

This gives the Image Fill algorithm (in pseudocode)

function ImageFill(in Image I, in Position s, out Image 0)
Stack stack

stack.push(s);

while(not stack.empty())
stack.pop(c)
0.labelPixel(c)

if(similar(c, c.left()) and '0.GetPixel(c.left()))
0.LabelPixel(c.left())
stack.push(c.left())
endif
. similar to right, top, bottom neighbors
endwhile
endfunction

Defining an AbstractStack Interface

create a stack (constructor)
destroy a stack (destructor)
empty query (isempty)
insert (push)

remove (pop)

retrieve (top)

vV vV VvYy VY VvyYy

See code.

Exercise: Defining Tests for the Stack ADT

See website.

Next Actions and Reminders

» Read CH 7

» No warmup for Fri

> Note: the class meeting on Monday 10/2 is cancelled. A
pre-recorded lecture on error handling will be available instead.

