
ECE 2574: Data Structures and Algorithms -
Applications of Recursion II

C. L. Wyatt

Today we will look at another application of recursion, a
depth first search of a graph, as well as the relationship
between recursion and mathematical induction.

I Representing problems as state-space graphs
I Searching state spaces using recursive depth-first search
I Recursion and recurrence relations

Many problems can be solved by searching

One represents the problem as a state space.
Starting at some initial state and following state transisitions
leads to other states.
When you reach a goal state you have found the solution.

Example: Peg Solitaire

Example: 8 Queens

Example: Path Finding

Example Constraint Satisfaction

In each of these examples the goal state is at a fixed depth.

The search can proceed depth-first in a recursive manner

function recursive_dfs(state)

if(state is goal)
return state

else
for each successor of state

return recursive_dfs(successor)
end

endfunction

This can be converted to an iterative solution using a stack (next
meeting)

Example mini-sudoku

Consider a simplified version of Sudoku in a 3x3 form.
I 3x3 square
I each number 1-3 must be used on each row and column

exactly once

We can use Backtracking-Search to solve it.
See example code.

Mathematical Induction is a technique often used with
verification proofs.

It is based on the following axiom:
Mathematical Induction: A property P(n) that involves an integer n
is true for all n >= 0 if

1. P(0) is true, and
2. if P(k) is true for any k >= 0, then P(k+1) is true.

Step 1. is the base case.
Step 2. is the inductive step.

Induction Example: sum of first n positive integers
Prove: n∑

i=1
i = n(n + 1)

2

Base Case:
1∑

i=1
i = 1 = 1(1 + 1)

2 = 1

Induction Step:
k∑

i=1
i = k(k + 1)

2

k∑
i=1

i + (k + 1) = k(k + 1)
2 + (k + 1)

k+1∑
i=1

i = (k + 1)((k + 1) + 1)
2

Recursion defines a solution in terms of itself.

A recursive procedure is one whose evaluation at (non- initial)
inputs involves invoking the procedure itself at another input.
Recurrence relation with an initial condition
fact(n) = n*fact(n-1) with fact(0) = 1 and fact(1) = 1
Recursive functions have a base case and (one or more) recursions.

Induction is a powerful tool to prove properties of recursive
algorithms.

Induction and recursion are very similar concepts
I Induction has a base case
I Recursion has a base case
I Induction has an inductive step (assume k, show k+1)
I Recursion has a recursive step, compute at k by computing at

f(k)

In general we use induction to prove 2 properties of algorithms:
I correctness and
I complexity

Properties of algorithms: why do we care ?

Correctness: we would like to know the algorithm solves the
problem we want it to solve.
Complexity: we would also like to know how many resources we
expect the algorithm to use.
Resources:

I How much memory ?
I How long will it take ?
I Under what assumptions about the inputs ?

Example using induction to prove correctness: Factorial

Prove the following function computes n!

function fact(in n:integer):integer
if(n is 0) return 1
else return n*fact(n-1)

endfunction

Base case: n == 0
This follows directly from the pseudo-code. fact(0) = 1.

Proving Factorial correct: Inductive step

Assume that fact(k) = k! = k(k-1)(k-2)* * 2 * 1
By definition, fact(k+1) returns (k+1)*fact(k)
We’ve assumed fact(k) returns k(k-1)(k-2)* * 2 * 1 and that it
is correct.
Then fact(k+1) returns (k+1)* k(k-1)(k-2)* * 2 * 1 which is
(k+1)! by definition.
Base case plus inductive conclusion prove algorithm correct.

Next Actions and Reminders

I Read CH Chapter 6 (it is a short chapter)
I Complete the warmup before noon on Wed 9/27
I P1 is due Wednesday by 11:55 pm

