
ECE 2574: Data Structures and Algorithms -
Applications of Recursion I

C. L. Wyatt

Today we will look a common task that is easily solved
using a recursive solution, parsing algebraic expressions.

I Warmup
I Review of algebraic expressions
I converting between prefix and postfix expressions
I an implementation in C++

Why prefix or postfix notation?

Many of you asked, in some form or another, why prefix or positfix
notation?

I unambiguous, there are no operator precedence rules
I easy to parse (translate into a tree form) for evaluation
I supports operators with n-ary arguments with no additional

syntax

For this reason, prefix and postfix notation is used in many
programming and data description languages

I languages in the Lisp family use prefix notation
I stack-based languages generally use postfix notation

Algebraic Expressions

Lets say we are going to write a program to act as a calculator. For
example:

(a + b)*c
(a/b)*c
(a-b-c-d)/e

How does the calculator decide if the expression is valid ?

Lets start with a less complex Algebraic grammar

Prefix expressions. In prefix notation the operation is written first,
followed by the two operands.
Examples:

I * + a b c in infix notation is (a + b)*c
I + / a b - c d in infix notation is (a / b) + (c - d)

The grammar looks like:

<prefix> = <operand> | <operator> <prefix> <prefix>
<operator> = + | - | * | /
<operand> = a | b | c | | z

Validation of a prefix expression using recursion

<prefix> = <operand> | <operator> <prefix> <prefix>
<operator> = + | - | * | /
<operand> = a | b | c | | z

Base step is simple: check for operator at string beginning.
The recursive step is a little more complicated. The key is that if
<prefix> is a valid prefix <prefix><ch>, where <ch> is any
non-blank character, is not.

Validation of a prefix expression using recursion
function endPre(in s:string, in first:int): int

last = s.length() - 1
if(first < 0 or first > last)

return -1

ch = first char of s
if(ch is an operand)

return first
else if(ch is an operator)

firstEnd = endPre(s, first+1);
if(firstEnd > -1)

return endPre(s, firstEnd +1)
else

return -1
else

return -1
endfunction

Using the endPre function to validate the grammar

Call endPre at first character in the string
if the last character returned is not the last one it is not a valid
prefix expression.

function isPre(in s:string): bool

lastChar = endPre(s, 0)

return lastChar >= 0 AND
lastChar == s.length()-1

endfunction

Warmup #1

Is the following string a valid prefix expression?

/ + a c d - e g

False (53% correct)

Similar is the postfix notation

<postfix> = <operand> | <postfix> <postfix>
<operator> <operator> = + | - | * | /
<operand> = a | b | c | | z

Suppose we wanted to convert the prefix expression to a postfix
expression.

<postfix> = <operand> | <postfix> <postfix> <operator>
<prefix> = <operand> | <operator> <prefix> <prefix>

A recursive solution to conversion
function convert(in pre:string,

out post:string)
ch = first character of pre
delete first character of pre

if ch is an operand
post = post + ch //concatenate

else
// recursion to convert 1st
convert(pre, post)
// recursion to convert 2nd
convert(pre, post)
// concatenate the operator
post = post + ch

endif

endfunction

Validating a postfix expression
function endPost(in s:string, in last:int): int

first = 0
if(first > last)

return -1

ch = last char of s
if(ch is an operand)

return last
else if(ch is an operator)

lastEnd = endPost(s, last-1);
if(lastEnd > -1)

return endPost(s, lastEnd-1)
else

return -1
else

return -1
endfunction

Validating a postfix expression: isPost

Call endPost at last character in the string
if the last position returned is not zero it is not a valid postfix
expression.

function isPost(in s:string): bool

firstChar = endPost(s, s.length()-1)

return firstChar == 0

endfunction

Warmup #2

Is the following string a valid postfix expression?

h r * R f - + t g - e f / *

False (49% Correct)

A recursive solution to conversion the other way
function convert(in post:string,

out pre:string)
ch = last character of post
delete last character of post

if ch is an operand
pre = pre + ch //concatenate

else
// concatenate the operator
pre = pre + ch
// recursion to convert 1st to temp
convert(post, temp)
// recursion to convert 2nd
convert(post, pre)
pre = pre + temp // append temp

endif
endfunction

Warmup #3

Convert the following prefix expression to a postfix expression.

+ * A B / C D

A B * C D / + (80 Correct)

Exercise: Implementing and testing in C++

See website.

Next Actions and Reminders

I Read CH pp. 172-186.
I There is no warmup for Monday.
I Program 1 is due Wed at 11:55pm via Canvas.
I If you have used all your late days, you must turn it in on time.

