
ECE 2574: Data Structures and Algorithms -
Recursion II

C. L. Wyatt

Today we will look at two more examples of recursion and
discuss performance issues

I Warmup
I Binary search of arrays
I Towers of Hanoi solution
I Efficiency of recursion in C++

Recursion is often useful when manipulating arrays.

Consider the binary search algorithm given a sorted array and a
value to search for, the key.

I find the middle of the array
I if the key is in the middle slot, done
I if key is less, search just the lower half
I else search the upper half

Warmup #1

I Consider the array {1,3,6,7,12,18,19} and the binary
search algorithm.

I Assume zero-based indexing.
I Suppose you are searching for a key = 2.

On the first call of the algorithm which index and value would you
compare the key to? 69% correctly answered index 3, value 7.

A recursive version in pseudo-code

function search(data[], int lo, int hi, key) returns int

if(lo > hi) return -1

mid = floor(lo + (hi - lo) / 2)

if (key < data[mid])
return search(data, lo, mid-1, key)

elseif (key > data[mid])
return search(data, mid+1, hi, key)

else
return mid

endfunction

The first call is mid = search(data, 0, length(data)-1,
key).

A iterative version in pseudo-code
function search(data[], key) returns int

int lo = 0
int hi = length(data) - 1

while (lo <= hi)
mid = floor(lo + (hi - lo) / 2)
if (key < data[mid])

hi = mid-1
elseif (key > data[mid])

lo = mid+1
else

return mid
endwhile

return -1
endfunction

Question, why do either of these?

This implementation does not even require the array to be sorted.

function search(data[], key) returns int

for(int i = 0; i < length(data); ++i)
if(data[i] == key)
return i

endfor

return -1
endfunction

An important application of binary search is list filtering

I Credit-card numbers
I IP addresses
I Email sender filters
I on and on

These might be setup as either whitelist or blacklist filtering.

A classic recursion example: Towers of Hanoi

Move N disks from peg A to peg B, using C as an intermediary, at
all times disks must be ordered largest to smallest vertically.

| | |
<1> | |

<-2-> | |
<--3--> | |

===================================
A B C

Recursive Solution to Towers of Hanoi (pseudo-code)

Function Towers(First, Aux, Last, n)
Input: Names of three pegs: First, Aux, Last
Output: solution to problem

if(n == 1)
write("Move disk 1 from peg" First "to Last)

else
Towers(First, Last, Aux, n-1)
write("Move disk" n "from peg" First "to Last)
Towers(Aux, First, Last, n-1)

endif
endfunction

Warmup #2

The recurrence relation for the number of moves when solving the
towers problem for n > 0 disks, t(n) is
t(n) = 2*t(n-1) + 1; with I.C. t(1) = 1
or in closed form
t(n) = 2ˆn-1
How many moves does it take for n=4 disks versus n=10?
60% got this correct: 15 moves versus 1023 moves.

Number of moves required for Towers solution

Number of Disks n Number of Moves t(n)
--

1 1
2 3
3 7
4 15
5 31
6 63

10 1023
100 1.2677 x 10^30
... ...

--

Warmup #3

What kind of recursion can be converted to a iterative algorithm?
80% correctly answered tail recursion.

Efficiency of recursion in practice

I many languages have much better support for recursion, e.g
Haskell and Lisps

I we can simulate recursion using a stack (see lecture 13)
I In C and C++ it is hard to (portably) know how much stack

you have used, but easier to track how much heap you have
allocated

tail recursion

A tail-recursive function is one where
I there is a single recursive call
I it is the last statement in the recursive function

The simplest example for illustration

int fun(int x) {
if (x == 0) {

return x;
}
return fun(x - 1);

}

Most C++ compilers can do tail-call optimization, effectively
turning into an iterative procedure, when compiled with
optimization flags.

Exercise: Binary Search

Lets implement the binary search algorithm operating on a
std::array.

1. Download the starter code
2. In search.hpp implement the recursive binary search

algorithm as defined.
3. In search.hpp implement the iterative binary search algorithm

as defined.
4. Build your code locally as you work. Use the provided set of

Catch tests.
5. Submit your search.hpp file via Canvas at the Assignment

“Exercise for Meeting 6”.

ex06.zip

Next Actions and Reminders

I Read CH 95-111
I Warmup due by noon on Wednesday 9/13
I Project 1 will be released by Wed. It will be due Sat 9/23.

