## ECE 2574: Data Structures and Algorithms Recursion Part I

C. L. Wyatt

Today we will introduce the notion of recursion, look at some examples, and see how to implement them in code.

- Introduction to recursion
- Warmup
- Examples
- Exercise: Recursive Egyptian Powers


## Top-down Design

Top down design divides problems into smaller and easier sub-problems.


The hope is, at each of these successive levels, these sub-problems are easier to solve.

## Recursion

In some cases, the solution to lowest level sub-problem can be applied at the higher level.


This type of solution is called recursive.

## A graphical view

Graphical depictions of algorithms show connected boxes.


## Recursive solutions form nested boxes.



- The inner-most box solves the lowest-level problem,
- The next box solves the next level above.
- In a recursive solution the algorithm is the same at each level.


## Example: n!, the factorial

Simple iterative solution to compute the factorial

```
int factorial (int n)
{
    int result = n;
    do
    {
        n -= 1;
        result = result*n;
    } while (n > 1);
    return result;
};
```

How large an n will this work for in a real programming languages?

We can break the factorial solution into a recursive solution.

$$
\begin{aligned}
& \mathrm{n}!=1 * 2 * 3 * 4 * \ldots \ldots * \mathrm{n} \\
& \text { grouping terms } \\
& \mathrm{n}!=1 * 2 * 3 * 4 * \ldots \ldots *(\mathrm{n}-1) * \mathrm{n} \\
& \mathrm{n}!=\left(\begin{array}{ll}
(\mathrm{n}-1
\end{array}\right)!
\end{aligned}
$$

This is an example of a recurrence relation.

## A recursive solution to the factorial

```
int factorial (int n)
{
    if (n <= 1)
        return 1;
    else
        return(n*factorial(n-1));
};
```


## A recursive solution to the factorial

Graphically each box takes the output of the box inside it and multiplies by the integer in that box.
Example: $4!=4^{*} 3^{*} 2^{*} 1=\left(4^{*}\left(3^{*}\left(2^{*}(1)\right)\right)\right)$


## Formal definition of recursion

- A recursive procedure is one whose evaluation at (non-initial) inputs involves invoking the procedure itself at another input.
- In the case of the factorial this involves invoking the procedure at ( $n-1$ ) when the input is $n$ : $n!=n *(n-1)$ !
- Recursion is a very powerful tool in the design and analysis of algorithms.
- Often complex problems have very simple recursive solutions.


## What makes recursive procedures work ?

* At each invocation, the solution must get closer to a known solution
i.e. $0!=1!=1$
- The procedure calls must terminate in a finite number, that is the function must not endlessly call itself. Otherwise the recursion is infinite


## Recursive version of the GCD algorithm

Recall the GCD algorithm

- A. 0 If $m<n$, swap $m$ and $n$.
- A. 1 Divide $m$ by $n$ and let $r$ be the remainder.
- A. 2 If $r=0$, terminate; n is the answer.
- A. 3 Set $m$ to $n, n$ to $r$, and go back to step A.1.

A recursive solution (after step 0 ).

```
int gcd(int m, int n)
```

\{
if( $\mathrm{n}==0$ ) return m;
else return $\operatorname{gcd}(n, m \% n)$;
\}

## Recursive version of the GCD algorithm

The recurrence relation for GCD
$\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m \bmod n)$
The stopping condition (base case) is $\mathrm{n}=0$ Example:
$\operatorname{gcd}(131,62)->\operatorname{gcd}(62,7)->\operatorname{gcd}(7,6)$
-> $\operatorname{gcd}(6,1)$-> $\operatorname{gcd}(1,0)$

## Warmup \#1

Which of the following C++ functions correctly computes the sum from 1 to $n$ using recursion?

```
int function1(int n){
    int sum = 0;
    for(int i = 1; i <= n; ++i){
        sum += i;
    }
    return sum;
}
```

Incorrect. (15\%).

## Warmup \#1

Which of the following C++ functions correctly computes the sum from 1 to $n$ using recursion?

```
int function2(int n){
    if(n == 1) return 1;
    return n + function2(n-1);
}
```

Correct (81\%).

## Warmup \#1

Which of the following C++ functions correctly computes the sum from 1 to n using recursion?
int function3(int $n$ ) \{ return $n *(n+1) / 2$;
\}

Incorrect. (3\%).

## Warmup \#2

What would happen if function 1 in the previous question was called with an argument of -1 ?

```
int function1(int n){
    int sum = 0;
    for(int i = 1; i <= n; ++i){
        sum += i;
    }
    return sum;
}
```

The correct answer is "it would return 0" (63\%).

## Warmup \#3

What would happen if function2 in the previous question was called with an argument of -1 ?

```
int function2(int n){
    if(n == 1) return 1;
    return n + function2(n-1);
}
```

The correct answer is "A run-time error would occur" (73\%).

## Warmup \#4

What would happen if function3 in the previous question was called with an argument of -1 ?

```
int function3(int n){
    return n*(n+1)/2;
}
```

The correct answer is "It would return 0" (85\%).

## Another Example: Exponentiation

- The Egyptian Powers algorithm computes $x$ to the power $n$ by repeated squaring.
- The recurrence relation for computing $x^{n}$ for any positive integer n :

$$
x^{n}=\left\{\begin{array}{cc}
(x \cdot x)^{n / 2} & n \text { even } \\
x(x \cdot x)^{(n-1) / 2} & n \text { odd }
\end{array}\right.
$$

## Exercise: write a recursive function and a set of tests

 implementing the Egyptian Powers algorithm.In pseudo-code
function RecPowers ( $\mathrm{x}, \mathrm{n}$ )
Input: a real number x and positive integer n Output: x raised to power n

```
if (n == 1) // initial condition
    pow = x;
else
    if even(n) then
        pow = RecPowers(x*x,n/2)
    else
        pow = x*RecPowers(x*x,(n-1)/2)
    endif
endif
return (pow)
endfunction
```


## Next Actions and Reminders

- Read CH pp. 67-87
- Warmup before noon on Monday.
- Program 0 due tonight by 11:59 PM.

