
ECE 2574: Data Structures and Algorithms -
Recursion Part I

C. L. Wyatt

Today we will introduce the notion of recursion, look at
some examples, and see how to implement them in code.

I Introduction to recursion

I Warmup

I Examples

I Exercise: Recursive Egyptian Powers

Top-down Design

Top down design divides problems into smaller and easier
sub-problems.

The hope is, at each of these successive levels, these sub-problems
are easier to solve.

Recursion

In some cases, the solution to lowest level sub-problem can be
applied at the higher level.

This type of solution is called recursive.

A graphical view

Graphical depictions of algorithms show connected boxes.

Recursive solutions form nested boxes.

I The inner-most box solves the lowest-level problem,

I The next box solves the next level above.

I In a recursive solution the algorithm is the same at each level.

Example: n!, the factorial

Simple iterative solution to compute the factorial

int factorial (int n)

{

int result = n;

do

{

n -= 1;

result = result*n;

} while (n > 1);

return result;

};

How large an n will this work for in a real programming languages?

We can break the factorial solution into a recursive
solution.

n! = 1*2*3*4*......*n

grouping terms

n! = 1*2*3*4*.......*(n -1)*n

n! = ((n -1)!)*n

This is an example of a recurrence relation.

A recursive solution to the factorial

int factorial (int n)

{

if (n <= 1)

return 1;

else

return(n*factorial(n-1));

};

A recursive solution to the factorial

Graphically each box takes the output of the box inside it and
multiplies by the integer in that box.
Example: 4! = 4*3*2*1 = (4*(3*(2*(1))))

Formal definition of recursion

I A recursive procedure is one whose evaluation at (non-initial)
inputs involves invoking the procedure itself at another input.

I In the case of the factorial this involves invoking the
procedure at (n-1) when the input is n: n! = n*(n-1)!

I Recursion is a very powerful tool in the design and analysis of
algorithms.

I Often complex problems have very simple recursive solutions.

What makes recursive procedures work ?

* At each invocation, the solution must get closer to a known
solution
i.e. 0! = 1! = 1

I The procedure calls must terminate in a finite number, that is
the function must not endlessly call itself. Otherwise the
recursion is infinite

Recursive version of the GCD algorithm

Recall the GCD algorithm

I A.0 If m < n, swap m and n.

I A.1 Divide m by n and let r be the remainder.

I A.2 If r = 0, terminate; n is the answer.

I A.3 Set m to n, n to r, and go back to step A.1.

A recursive solution (after step 0).

int gcd(int m, int n)

{

if(n == 0) return m;

else return gcd(n, m%n);

}

Recursive version of the GCD algorithm

The recurrence relation for GCD

gcd(m,n) = gcd(n, m mod n)

The stopping condition (base case) is n = 0
Example:

gcd(131,62) -> gcd(62,7) -> gcd(7,6)

-> gcd (6,1) -> gcd(1,0)

Warmup #1

Which of the following C++ functions correctly computes the sum
from 1 to n using recursion?

int function1(int n){

int sum = 0;

for(int i = 1; i <= n; ++i){

sum += i;

}

return sum;

}

Incorrect. (15%).

Warmup #1

Which of the following C++ functions correctly computes the sum
from 1 to n using recursion?

int function2(int n){

if(n == 1) return 1;

return n + function2(n-1);

}

Correct (81%).

Warmup #1

Which of the following C++ functions correctly computes the sum
from 1 to n using recursion?

int function3(int n){

return n*(n+1)/2;

}

Incorrect. (3%).

Warmup #2

What would happen if function1 in the previous question was
called with an argument of -1?

int function1(int n){

int sum = 0;

for(int i = 1; i <= n; ++i){

sum += i;

}

return sum;

}

The correct answer is “it would return 0” (63%).

Warmup #3

What would happen if function2 in the previous question was
called with an argument of -1?

int function2(int n){

if(n == 1) return 1;

return n + function2(n-1);

}

The correct answer is “A run-time error would occur” (73%).

Warmup #4

What would happen if function3 in the previous question was
called with an argument of -1?

int function3(int n){

return n*(n+1)/2;

}

The correct answer is “It would return 0” (85%).

Another Example: Exponentiation

I The Egyptian Powers algorithm computes x to the power n by
repeated squaring.

I The recurrence relation for computing xn for any positive
integer n:

xn =

{
(x · x)n/2 n even

x(x · x)(n−1)/2 n odd

Exercise: write a recursive function and a set of tests
implementing the Egyptian Powers algorithm.

In pseudo-code

function RecPowers (x, n)

Input: a real number x and positive integer n

Output: x raised to power n

if (n == 1) // initial condition

pow = x;

else

if even(n) then

pow = RecPowers(x*x,n/2)

else

pow = x*RecPowers(x*x,(n-1)/2)

endif

endif

return (pow)

endfunction

Next Actions and Reminders

I Read CH pp. 67-87

I Warmup before noon on Monday.

I Program 0 due tonight by 11:59 PM.

