
ECE 2574: Data Structures and Algorithms -
Basic Polymorphism

C. L. Wyatt



Today we will look at templates (again) and inheritance,
two powerful mechanisms for code reuse in C++.

I Warmup
I More about Templates
I C++ Inheritance and Base Classes
I Exercise: Defining a Bag Interface in C++



Generics in C++

I Templates elevate types to be generic, named but unspecifed,
and can work with functions and classes.

I Templates allow code reuse as long as the types meet the
functionality required by the template

I The C++ standard library uses templates extensively



Example 1: template function to swap

A simple example is a function to swap the contents of two variables
(similar to std::swap):

template< typename T >
void swap(T& a, T & b)
{

T temp(b);
b = a;
a = temp;

}



Example 1: template function to swap
The symbol T acts like a variable, in fact it is a type variable.
Defined this way swap is generic, I can use it on any type that can
be copied. For example:

int a = 1;
int b = 2;

std::cout << a << ", " << b << std::endl;
swap(a,b);
std::cout << a << ", " << b << std::endl;

std::string A = "foo";
std::string B = "bar";

std::cout << A << ", " << B << std::endl;
swap(A,B);
std::cout << A << ", " << B << std::endl;



Example 1: template function to swap
If the type does not support a particular usage it generates a
compile time error. For example suppose I wrote a class that
explicitly does not allow copies
class NoCopy
{
public:

NoCopy() = default;
NoCopy(const NoCopy & x) = delete;

};

and tried to use swap as
NoCopy x,y;
swap(x,y);

My compiler complains

swapexample.cpp:7:5: error: call to deleted constructor of 'NoCopy'
T temp(b);



Example 2: template class to hold a pair of objects
Templates work with classes as well. For example, we might define a
tuple holding two different types (aka std::pair) as

template <typename T1, typename T2>
class pair
{
public:

pair(const T1 & first, const T2 & second);

T1 first();
T2 second();

private:
const T1 m_first;
const T2 m_second;

};



Example 2: template class to hold a pair of objects
And implement it like

template <typename T1, typename T2>
pair<T1,T2>::pair(const T1 & first, const T2 & second)
: m_first(first), m_second(second)
{}

template <typename T1, typename T2>
T1 pair<T1,T2>::first()
{

return m_first;
}

template <typename T1, typename T2>
T2 pair<T1,T2>::second()
{

return m_second;
}



Example 2: template class to hold a pair of objects

We might use it like so

pair<int,std::string> x(0, std::string("hi"));

std::cout << "First = " << x.first() << std::endl;
std::cout << "Second = " << x.second() << std::endl;



Warmup #1

The C++ standard library includes several classes called containers.
Look up the definition for std::vector, one such container.
Which of the following are correct ways to declare a variable named
myvec with a type representing a vector of vectors of integers?

I std::vector< std::vector<int> > myvec; (86%)
CORRECT

I std::vector<std::vector<int> > myvec; (79%)
CORRECT

I vector<vector<int> > myvec; (21%)
I std::vector< std::vector<int>> myvec; (54%)



Warmup #1

std::vector< std::vector<int> > myvec;

I note, vector is in the namespace std
I take care to include a space between ‘> >’ in nested templates

as the compiler gets confused with the stream extraction
operator ‘>>’.



Warmup #2

Why does your text suggest including PlainBox.cpp at the bottom
of PlainBox.h?

I You can always include an implementation file in a header (2%)
I To make the code compile faster (5%)
I To make the code run faster (4%)
I Because it implements the template member functions (89%)

CORRECT



Warmup #3

Would this work for other (non-template) implementation files?
I Yes (36%)
I No (64%)



To prevent confusion, another convention is to use a
different extension for the template implementation file.

Examples: .txx, tpp
You still include them at the bottom of the header file.

I This is the convention we will use. See the course FAQ for how
to enable highlighting of these files in VS.



C++ Inheritance and Base Classes

I C++ has several mechanisms to reuse code.
I One of them is polymorphism (many-form), where a class can

inherit methods from one or more other classes.

This has several uses, but the one that concerns us at the moment
is specifying an interface, a class where the public methods are
defined but not implemented.

I This defines the way client code can use a class that conforms
to the interface.

I To define such a class you inherit from the interface, called a
base class in C++, and implement the methods.



Classic Shape Example

Suppose we wanted to have classes that model closed 2D shapes.
There are things that (almost) every 2D shape has, for example a
perimeter. We can ensure that any class that implements a specific
2D shape has an appropriate method by first defining a base class

class Shape2DBase
{
public:

virtual double perimeter() = 0;
};



Classic Shape Example

Note the use of the keyword virtual which means it can be
redefined in subclasses and the = 0 syntax which says this class
does not provide an implmentation on purpose. Defined this way
we can’t instantiate such a class – the following will not compile

Shape2DBase shape;



Classic Shape Example
We can define and implement a set of classes that conform to the
base class using public inheritance (there are other kinds we are
ignoring for now). For example we might define a Circle as
class Circle: public Shape2DBase
{
public:

Circle(double r): radius(r) {};

double perimeter()
{

return 2*M_PI*radius;
}

private:
const double radius;

};
We might continue with classes for Square, Rectangle, Ellipse, etc.
each inheriting from Shape2DBase and implementing the perimeter
method appropriate to the shape they model.



Classic Shape Example

This is handy because, while I can’t instantiate the Shape2DBase, I
can a pointer or a reference to one. So I could define a function
that works for any subclass of Shape2DBase (lets say I want to
show the perimeter) as

void show_perim(Shape2DBase & shape)
{

std::cout << "Perimeter = " << shape.perimeter() << std::endl;
}

I can then pass a Circle, Square, etc to the function. Since it knows
the classes have a perimeter method it can call it. Example

Circle c1(1.0);

show_perim(c1);



Templates versus Base Classes

You might have noticed this looks similar to templates. For example
I could define Circle, Square, etc without inheritance but till defining
a perimeter method, then define the function as a template

template<typename T>
void show_perim(T & shape)
{

std::cout << "Perimeter = " << shape.perimeter() << std::endl;
}

You are right! The difference is one between runtime and compile
time, or dynamic versus static polymorphism.



Inheritance versus Composition versus Templates

So, which do you use when?
I Use composition for “is implemented in terms of” or “has a”
I Use inheritance for “is a”
I Use templates for “works with”



In-class Exercise

Now, supplied with templates and the notion of base classes we can
create an interface for the generic Bag ADT and adapt our
implementation of Bag to use this interface definition.

1. Download the starter code
2. In the file abstract_bag.hpp define a C++ interface for our

Bag ADT.
3. Adapt the Bag implementation using automatic storage in the

files bag_simple.hpp and bag_simple.tpp to use this
interface

4. Build your code locally as you work.
5. Submit your abstract_bag.hpp and modified

bag_simple.hpp files via Canvas at the Assignment “Exercise
for Meeting 4”.

ex04.zip


Next Actions and Reminders

I Read CH pp. 48-66 on Recursion
I Warmup due by noon on Fri 9/8
I Program 0 is due 9/8 by 11:59pm


