
ECE 2574 Data Structures and Algorithms

Meeting 2: ADT Bag

Today we will take a look at our first ADT, how to define an
interface for it in C++, and discuss possible implementations.
Along the way we will get an introduction to CMake and testing
using Catch.

Today’s Schedule:

I ADT Bag

I Bag Definition using a Templated Class.

I Testing the Bag using Catch and CMake

Warmup #1

Consider the ADT Bag as defined on page 21 of the text without
the toVector() method ...

A Bag holds a finite number of objects of the same type,
not necessarily distinct, with no particular ordering.

I construct(): construct an empty bag

I destroy(): destroy the bag and any contents

I add(Item): add an Item to the bag, returns true on
success, else false

I remove(Item): remove a single instance of Item from the
bag, returns true on success, else false

I isEmpty(): returns true if the bag has no contents, else false

I getCurrentSize(): returns the number of items in the bag
as an integer

I clear(): removes all items in the bag

I getFrequencyOf(Item): the number of times item
appears in the bag

I contains(Item): returns true if at least one Item is in the
bag, else false

Warmup #1

Consider the ADT Bag as defined on page 21 of the text without
the toVector() method. What could you do with such an ADT
(check all that apply)

I Determine the percentage of entries in a bag equal to a given
entry (74%) CORRECT

I Sort the entries according to some criteria (23%)

I List each entry in the bag with its frequency of occurance
(57%)

Warmup #2

What is the primary mechanism for implementing ADTs in C++?

Classes (89% got this correct)

Classes are the primary mechanism for implementing ADTs
in C++

A type is a concrete representation of a concept.

For example, the type float approximates a real number

A class is a user-defined type that extends the built-in types.

For example, the class Bag models the concept of the ADT Bag.

Classes provide many advantages for implementing ADTs.

I They can hide implementation details via private.

I They provide a means of forcing the ADT interface to be used.

I They enable type-checking on complex concepts.

I They assist with assertion checking and maintaining
constraints.

All of this helps to keep the object, an instance of the type, in a
well-defined state.

Templates

A bag of integers and a bag of strings are basically the same. All
that is really required for the type of bag objects is that they can
be copied (or moved) and there is a test for equality. We can
declare a generic class as

template<typename T> class Bag;

Exercise (see starter code on website)

Consider a simplified version of the Bag ADT (without toVector).
In bag.hpp define a templated class for the simplified Bag ADT.

I The class is named Bag.

I Use std::size t rather than int as the type for sizes.

I Pass entries by constant reference

I Take care with const correctness.

Implement stubs for these methods in the same header file, but
after the class declaration.

Warmup #3

Describe an example of a test you might write to check an
implementation of the ADT Bag.
Examples:

I Allocate a Bag of Ints, test that its size is 0

I Allocate a Bag if Ints, add some to it, check size, contains,
etc.

The most common misconception is that an application is not
really a test. You want to know your ADT works separate from
using it in an application.

Next Actions

I Read CH pp. 31-37 (C++ classes), this should largely be a
review

I Take warmup before 8am on Friday 8/26.

