ECE 2574 Data Structures and Algorithms

Fall 2017
CRN 82739 MWF 2:30-3:20 in WLH 320
https://filebox.ece.vt.edu/~ECE2574

Instructor: Chris Wyatt, clwyatt@vt.edu

Today’s Schedule:
» Course objectives and content
» Course administration
» Quick Review of ECE 1574

https://filebox.ece.vt.edu/~ECE2574

Introductions

Please take the ungraded survey on Canvas (Quizzes - Surveys -
Introduction Survey)

» Tell me about yourself

» Help me select my office hours

An expression of a computational method in a computer
language is a program.

// simple C++ program
#include <iostream>
#include <cstdlib>

int main()

{
std::cout << "Hello World!" << std::endl;
return EXIT_SUCCESS;

};

Programs are made up of modules.

Modules are self contained units of code that solve sub-problems
of the larger programming task.

[Program]
/\

This course is about Abstract Data Types and Algorithms

Abstraction separates the purpose of program modules from the
implementation details.

An algorithm is a finite set of rules that give a sequence of
operations for solving a specific type of problem.

Abstraction separates the purpose of program modules
from the implementation details.

One way to represent a list in C4++ (initially empty)
typedef itemtype char;

const unsigned int LEN = 256;

itemtype *mylist;

unsigned int mylistlen= O;

mylist= new itemtype[LEN+1];
*mylist = 0;

Abstraction separates the purpose of program modules

from the implementation details.
One way to append to that list

typedef itemtype char;
const unsigned int LEN = 256;
itemtype *mylist;

unsigned int mylistlen= O;
mylist= new itemtype[LEN+1];
*mylist = 0;

assert(mylistlen < LEN);

*(mylist + mylistlen) = A;
*(mylist + mylistlen + 1) = 0;
mystringlen++;

We can define a list based solely on its behavior.

A list is a sequence of (possibly ordered) items with a beginning
and end. The operation append places an item in the list.

There is no mention of how the list is implemented. This is an
abstract data type (ADT).

List<char> MyList;
MyList.append(A);

So what's the Big Deal?

typedef itemtype char;
const unsigned int LEN = 256;
itemtype *mylist;

unsigned int mylistlen= O;
mylist= new itemtype[LEN+1];

List<char> MyList;
*mylist = O; rsvechars fyhls

MyList.append(A);
assert(mylistlen < LEN);
*(mylist + mylistlen) = A;
*(mylist + mylistlen + 1) = 0;
mystringlen++;

Which one is easier to write, read, debug, and maintain?

Abstraction is needed because of the limitations of the
human mind.

Abstraction is needed because of the limitations of the
human mind.

» 1574024851

Abstraction is needed because of the limitations of the
human mind.

» 1574024851
»5402316658

Abstraction is needed because of the limitations of the
human mind.

» 1574024851
»5402316658
» 1231212312

An algorithm is a finite set of rules that give a sequence of
operations for solving a specific type of problem.

Informally, a recipe, process, method, procedure, or routine

Step A Step B Step D

Step C

In a more formal sense, an algorithm has five essential
features.

1. Finiteness, an algorithm should terminate after a finite number
of steps.

A procedure that has all the other characteristics of an algorithm
except finiteness is more accurately called a computational method.

In a more formal sense, an algorithm has five essential
features.

2. Definiteness, each step of an algorithm must be precisely
defined.

Ambiguous
Compute the average value in a list of integers.

Precise
Compute the unbiased sample mean, m, of a list of n integers

1,02, ...In as
n
1 .
m = E 1]
n—1
=1

In a more formal sense, an algorithm has five essential
features.

3. Input, an algorithm has zero or more quantities given to it
initially or as it runs.

In a more formal sense, an algorithm has five essential
features.

4. Qutput, an algorithm has one or more outputs specifically
related to the inputs.

In a more formal sense, an algorithm has five essential
features.

5. Effectiveness, an algorithms operations should be sufficiently
basic to be done exactly in a finite length of time.

The pen and paper test.

An example: Euclids greatest common divisor (GCD)
algorithm

Algorithm Euclid. Given two positive integers m and n, find their
greatest common divisor, that is, the largest positive integer that
evenly divides both m and n.

AOIf m < n, swap mand n

A.1 Divide m by n and let r be the remainder.

A2 If r = 0, terminate; n is the answer.

A.3 Set mton, ntor, and go back to step A.1

» Finite?
» Definite?

v

Inputs?
Outputs?
Effective?

v

v

Course Objectives

» design algorithms for solving problems that use data structures

» implement algorithms in C++ using good programming style.

Course Topics

Abstract Data Types (ADTs):

>

>

>

>

>

>

>

Bag

Lists (std::vector, std::deque, std::list)
Stacks (std::stack)

Queues (std::queue, std::priority_queue)
Dictionaries (std::map, std::unordered_map)
Trees

Graphs

Algorithms:

>

>

data structure operations

sorting and searching

Course Topics

Software Design:

> Interface Design

v

ADT implementations

v

Testing

v

Templates (generics)
Complexity:
> Recursion Relations
» O-notation
» memory and computational complexity
> best, worst, and average complexity

> classification of problems by their complexity: P, NP, and
NP-Complete

The only prerequisite is ECE 1574 — Object-Oriented
Engineering Problem Solving With C++
You are expected to be competent in the basics of programming
with C++-.
» Basics of computer organization
» Data types and expressions
» Functions
> lteration and conditionals
» Design and implementation of complete programs
> Use of arrays
» Use of classes and basic class design
» Formatted I/O and the use of files
» Pointers and run-time memory allocation, basic memory

management

The first assignment, program 0, will help you review.

Software

A modern C++ compiler with sufficient C4++11 support is

required.
» GCC >=438
» Clang >=3.3

» VC++ >= 18 (Visual Studio 2013 or 2015)

We will use the open source CMake application for managing the
build process (www.cmake.org).

You can use any integrated development environment (IDE)
supported by CMake, including Visual Studio on Windows and
XCode on the Mac.

Further information about the software development environment
for this course, including installation instructions, is on the website.
https://filebox.ece.vt.edu/~ECE2574/devenv.html

https://filebox.ece.vt.edu/~ECE2574/devenv.html

Texts and Resources

(CH) Carrano and Henry, Data
Abstraction and Problem Solving
Wlth C++ Walls and l\/lirrors, Data Abstraction &

ProblemiSolving with

6th ed.
Additional References:

» Sedgewick and Wayne,
Algorithms

» Martin, Clean Code

» Hunt and Thomas, The
Pragmatic Programmer

Additional Resources:

» C++ Reference: http://en.cppreference.com

http://en.cppreference.com

Course Activities

» Readings - Each meeting has a section of the text you are
responsible for

» Warmups - due before (usually) every lecture, test basic
understanding of assigned reading

» Lectures - Go over the warmup and we write some code

» Exercises - Gain some experience with the material for that
day (often in class)

> Projects - core of your learning, implementing and using ADTs

Communication

Course Website: https://filebox.ece.vt.edu/~ECE2574
» syllabus, schedule, notes, etc.
> primary way materials are distributed.
Canvas: https://vt.instructure.com
> take warmups
> submit assignments
» feedback and grades posted
Piazza: https://piazza.com/
» forum/wiki like software for QA, polls, announcements

> replaces email listserv, but has a configurable email digest

v

good mobile apps, embedded in Canvas

v

use it to ask (and answer) questions

https://filebox.ece.vt.edu/~ECE2574
https://vt.instructure.com
https://piazza.com/

The Auto-Grader

> https://grader.ece.vt.edu

» Service to you so that you have a good idea how correct your
code is.

» You upload your code as a zip file, the auto-grader runs your
tests and my tests, giving hints where your code fails my tests.

> You still need to submit through Canvas.

https://grader.ece.vt.edu

Grading

Warmups: 5% (Extra Credit)

Exercises: 10%
Projects: 60%
Midterm: 10%

Final: 20%

Collaboration and Late Policy

> All assignments must be turned in via Canvas by due date and
time

> No late assignments will be accepted, with the following
exception: you get five free late days (24 hour periods) on
projects during the semester to accommodate emergencies.
To use one or more of these, just submit the project via
Canvas as normal.

> All graded work is expected to be the original work of the
individual student unless otherwise directed.

How to Get Help

Some recommendations

» Use Piazza, it is probably the fastest way to get a question
answered

» Software Engineering Lab (SWEL): 332 Whittemore
» Don’t bang your head against a wall - ask.

» Don't be afraid to come to my office hours/help sessions.

Questions ?

Program 0

https:
//filebox.ece.vt.edu/~ECE2574/programs/P0/index.html
Due: 9/8 by 11:55 pm via Canvas.

https://filebox.ece.vt.edu/~ECE2574/programs/P0/index.html
https://filebox.ece.vt.edu/~ECE2574/programs/P0/index.html

Next Actions

v

setup your development environment

v

Start PO - this should be a review of the prerequisite material
Read CH 1.5, review Appendix A and B
Take warmup before noon on Wednesday 8/30.

v

v

