
ECE 5984: Introduction to  
Machine Learning 

 
Dhruv Batra  
Virginia Tech 

Topics:  
–  (Finish) Regression 
–  Model selection, Cross-validation 
–  Error decomposition 
–  Bias-Variance Tradeoff 

Readings: Barber 17.1, 17.2 



Administrativia 
•  HW1 

–  Solutions available 

•  Project Proposal 
–  Due: Tue 02/24, 11:55 pm  
–  <=2pages, NIPS format 
–  Show Igor’s proposal 

•  HW2  
–  Due: Friday 03/06, 11:55pm 
–  Implement linear regression, Naïve Bayes, Logistic 

Regression 
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Recap of last time 
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Regression 

(C) Dhruv Batra  4 



(C) Dhruv Batra  5 Slide Credit: Greg Shakhnarovich 



(C) Dhruv Batra  6 Slide Credit: Greg Shakhnarovich 



(C) Dhruv Batra  7 Slide Credit: Greg Shakhnarovich 



(C) Dhruv Batra  8 Slide Credit: Greg Shakhnarovich 



•  Why sum squared error??? 
•  Gaussians, Watson, Gaussians… 

But, why? 

9 (C) Dhruv Batra  



(C) Dhruv Batra  10 Slide Credit: Greg Shakhnarovich 



Is OLS Robust? 
•  Demo 

–  http://www.calpoly.edu/~srein/StatDemo/All.html 

•  Bad things happen when the data does not come 
from your model! 

•  How do we fix this? 
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Robust Linear Regression 
•  y ~ Lap(w’x, b) 

•  On paper 
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Plan for Today 
•  (Finish) Regression 

–  Bayesian Regression 
–  Different prior vs likelihood combination 
–  Polynomial Regression 

•  Error Decomposition 
–  Bias-Variance  
–  Cross-validation 
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Robustify via Prior 
•  Ridge Regression 

•  y ~ N(w’x, σ2) 
•  w ~ N(0, t2I) 

•  P(w | x,y) =  
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Summary 
Likelihood Prior Name 
Gaussian Uniform Least Squares 
Gaussian Gaussian Ridge Regression 
Gaussian Laplace Lasso 
Laplace Uniform Robust Regression 
Student Uniform Robust Regression 
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Example 
•  Demo 

–  http://www.princeton.edu/~rkatzwer/PolynomialRegression/ 
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What you need to know 
•  Linear Regression 

–  Model 
–  Least Squares Objective 
–  Connections to Max Likelihood with Gaussian Conditional 
–  Robust regression with Laplacian Likelihood 
–  Ridge Regression with priors 
–  Polynomial and General Additive Regression 
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New Topic: Model Selection and 
Error Decomposition 
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Example for Regression 
•  Demo 

–  http://www.princeton.edu/~rkatzwer/PolynomialRegression/ 

•  How do we pick the hypothesis class? 
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Model Selection 
•  How do we pick the right model class? 

•  Similar questions 
–  How do I pick magic hyper-parameters? 
–  How do I do feature selection? 
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Errors 
•  Expected Loss/Error 

•  Training Loss/Error  
•  Validation Loss/Error 
•  Test Loss/Error 

•  Reporting Training Error (instead of Test) is 
CHEATING 

•  Optimizing parameters on Test Error is CHEATING 
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Typical Behavior 
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•  a 



Overfitting 
•  Overfitting: a learning algorithm overfits the training 

data if it outputs a solution w when there exists 
another solution w’ such that: 
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Error Decomposition 
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Error Decomposition 
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Reality 



Error Decomposition 
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Error Decomposition 
•  Approximation/Modeling Error 

–  You approximated reality with model 

•  Estimation Error 
–  You tried to learn model with finite data 

•  Optimization Error 
–  You were lazy and couldn’t/didn’t optimize to completion 

•  (Next time) Bayes Error 
–  Reality just sucks 
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