ECE 5984: Introduction to Machine Learning

Topics:

- Probability Review
- Statistical Estimation (MLE)

Readings: Barber 8.1, 8.2

Dhruv Batra
Virginia Tech

Administrativia

- HW1
- Due on Sun 02/15, 11:55pm
- http://inclass.kaggle.com/c/VT-ECE-Machine-Learning-HW1

Project

- Groups of 1-3
- we prefer teams of 2
- Deliverables:
- Project proposal (NIPS format): 2 page, due Feb 24
- Midway presentations (in class)
- Final report: webpage with results

Proposal

- 2 Page (NIPS format)
- http://nips.cc/Conferences/2013/PaperInformation/StyleFiles
- Necessary Information:
- Project title
- Project idea.
- This should be approximately two paragraphs.
- Data set details
- Ideally existing dataset. No data-collection projects.
- Software
- Which libraries will you use?
- What will you write?
- Papers to read.
- Include 1-3 relevant papers. You will probably want to read at least one of them before submitting your proposal.
- Teammate
- Will you have a teammate? If so, what's the break-down of labor? Maximum team size is 3 students.
- Mid-sem Milestone
- What will you complete by the project milestone due date? Experimental results of some kind are expected here.

Project

- Rules
- Must be about machine learning
- Must involve real data
- Use your own data or take from class website
- Can apply ML to your own research.
- Must be done this semester.
- OK to combine with other class-projects
- Must declare to both course instructors
- Must have explicit permission from BOTH instructors
- Must have a sufficient ML component
- Using libraries
- No need to implement all algorithms
- OK to use standard SVM, MRF, Decision-Trees, etc libraries
- More thought+effort => More credit

Project

- Main categories
- Application/Survey
- Compare a bunch of existing algorithms on a new application domain of your interest
- Formulation/Development
- Formulate a new model or algorithm for a new or old problem
- Theory
- Theoretically analyze an existing algorithm
- Support
- List of ideas, pointers to dataset/algorithms/code
- https://filebox.ece.vt.edu/~s15ece5984/project.html
- We will mentor teams and give feedback.

Administrativia

- HW1
- Due on Sun 02/15, 11:55pm
- http://inclass.kaggle.com/c/VT-ECE-Machine-Learning-HW1
- Project Proposal
- Due: Tue 02/24, 11:55 pm
- <=2pages, NIPS format

Procedural View

- Training Stage:
- Raw Data $\rightarrow \mathrm{x}$
- Training Data $\{(\mathrm{x}, \mathrm{y})\} \rightarrow \mathrm{f}$
(Feature Extraction)
(Learning)
- Testing Stage
- Raw Data $\rightarrow \mathrm{x}$
- Test Data $\mathrm{x} \rightarrow \mathrm{f}(\mathrm{x})$
(Feature Extraction)
(Apply function, Evaluate error)

Statistical Estimation View

- Probabilities to rescue:
- x and y are random variables
$-D=\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right) \quad \sim P(X, Y)$
- IID: Independent Identically Distributed
- Both training \& testing data sampled IID from $P(X, Y)$
- Learn on training set
- Have some hope of generalizing to test set

Plan for Today

- Review of Probability
- Discrete vs Continuous Random Variables
- PMFs vs PDF
- Joint vs Marginal vs Conditional Distributions
- Bayes Rule and Prior
- Statistical Learning / Density Estimation
- Maximum Likelihood
- Maximum A Posteriori
- Bayesian Estimation
- We will discuss simple examples (like coin toss), but these SAME concepts will apply to sophisticated problems.

Probability

- The world is a very uncertain place
- 30 years of Artificial Intelligence and Database research danced around this fact
- And then a few Al researchers decided to use some ideas from the eighteenth century

Probability

- A is non-deterministic event
- Can think of A as a boolean-valued variable
- Examples
- A = your next patient has cancer
- A = Rafael Nada wins French Open 2015

Interpreting Probabilities

- What does $P(A)$ mean?
- Frequentist View
- limit $N \rightarrow \infty$ \#(A is true)/N
- limiting frequency of a repeating non-deterministic event
- Bayesian View
- $P(A)$ is your "belief" about A
- Market Design View
- $P(A)$ tells you how much you would bet

Presidential Election Winner

Updated at: 1:17 PM, next update in: 00:34 Refresh

Today's Change: +0.3
Shares Traded $1,900,248$

Ohama vs. Romney - Daily Close Prices Obama - Last 50 Trades \quad Romney - Last 50 Trades

(C) Dhruv Batra

Image Credit: Intrade / NPR

(C) Dhruv Batra

Slide Credit: Andrew Moore

Axioms of Probability

- $0<=P(A)<=1$
- $P($ empty-set $)=0$
- $P($ everything $)=1$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Interpreting the Axioms

- $0<=P(A)<=1$
- $P($ empty-set $)=0$
- $P($ everything $)=1$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Event space of all possible worlds

Its area is 1

Interpreting the Axioms

- $0<=P(A)<=1$
- $P($ empty-set $)=0$
- $P($ everything $)=1$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

The area of A can't get any smaller than 0
And a zero area would mean no world could ever have A true

Interpreting the Axioms

- $0<=P(A)<=1$
- $\mathrm{P}($ empty-set $)=0$
- $P($ everything $)=1$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

The area of A can't get any bigger than 1

And an area of 1 would mean all worlds will have A true

Interpreting the Axioms

- $0<=P(A)<=1$
- $P($ empty-set $)=0$
- $P($ everything $)=1$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Simple addition and subtraction

Concepts

- Sample Space
- Space of events
- Random Variables
- Mapping from events to numbers
- Discrete vs Continuous
- Probability
- Mass vs Density

Discrete Random Variables

$X \longrightarrow$ discrete random variable
\mathcal{X} or Val $(\mathrm{X}) \longrightarrow \quad \begin{gathered}\text { sample space of possible outcomes, } \\ \text { which may be finite or countably infinite }\end{gathered}$
$x \in \mathcal{X} \longrightarrow$ outcome of sample of discrete random variable $p(X=x) \longrightarrow$ probability distribution (probability mass function) $p(x) \longrightarrow$ shorthand used when no ambiguity

$$
0 \leq p(x) \leq 1 \text { for all } x \in \mathcal{X} \quad \sum_{x \in \mathcal{X}} p(x)=1
$$

$$
\mathcal{X}=\{1,2,3,4\}
$$

(C) Dhrulliform distribution slide Credit: Erik Sudandegenerate distribution 22

Continuous Random Variables

- On board

Concepts

- Expectation
- Variance

Most Important Concepts

- Marginal distributions / Marginalization
- Conditional distribution / Chain Rule
- Bayes Rule

Joint Distribution

(C) Dhruv Batra

Marginalization

- Marginalization
- Events: $P(A)=P(A$ and $B)+P(A$ and not $B)$
- Random variables $P(X=x)=\sum_{y} P(X=x, Y=y)$

Marginal Distributions

Conditional Probabilities

- $P(Y=y \mid X=x)$
- What do you believe about $Y=y$, if I tell you $X=x$?
- P(Rafael Nadal wins French Open 2015)?
- What if I tell you:
- He has won the French Open 9/10 he has played there
- Novak Djokovic is ranked 1; just won Australian Open
- I offered a similar analysis last year and Nadal won

Conditional Probabilities

- $P(A \mid B)=\ln$ worlds that where B is true, fraction where A is true
- Example
- H: "Have a headache"
- F: "Coming down with Flu"

$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
"Headaches are rare and flu is rarer, but if you're coming down with 'flu there's a 5050 chance you'll have a headache."

Conditional Distributions

X
(C) Dhruv Batra

$$
p(x, y \mid Z=z)=\frac{p(x, y, z)}{p(z)_{31}}
$$

Conditional Probabilities

- Definition
- Corollary: Chain Rule

Independent Random Variables

$$
P(x, y)
$$

Marginal Independence

- Sets of variables \mathbf{X}, \mathbf{Y}
- \mathbf{X} is independent of \mathbf{Y}
- Shorthand: $P \vdash(\mathbf{X} \perp \mathbf{Y})$
- Proposition: P satisfies $(\mathbf{X} \perp \mathbf{Y})$ if and only if
$-P(\mathbf{X}=\mathbf{x}, \mathbf{Y}=\mathbf{y})=P(\mathbf{X}=\mathbf{x}) P(\mathbf{Y}=\mathbf{y}), \quad \forall \mathbf{x} \in \operatorname{Val}(\mathbf{X}), \mathbf{y} \in \operatorname{Val}(\mathbf{Y})$

Conditional independence

- Sets of variables $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$
- \mathbf{X} is independent of \mathbf{Y} given \mathbf{Z} if
- Shorthand: $P \vdash(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
- For $P \vdash(\mathbf{X} \perp \mathbf{Y} \mid \varnothing)$, write $P \vdash(\mathbf{X} \perp \mathbf{Y})$
- Proposition: P satisfies $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$ if and only if
$-\mathrm{P}(\mathbf{X}, \mathbf{Y} \mid \mathbf{Z})=\mathrm{P}(\mathbf{X} \mid \mathbf{Z}) \mathrm{P}(\mathbf{Y} \mid \mathbf{Z}), \quad \forall \mathbf{x} \in \operatorname{Val}(\mathbf{X}), \mathbf{y} \in \operatorname{Val}(\mathbf{Y}), \mathbf{z} \in \operatorname{Val}(\mathbf{Z})$

Concept

- Bayes Rules

- Simple yet fundamental

$P\left(A^{\wedge} B\right)$	$P(A \mid B) P(B)$
$P(B \mid A)=--------=---------$	

This is Bayes Rule

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370418

Bayes Rule

- Simple yet profound
- Using Bayes Rules doesn't make your analysis Bayesian!
- Concepts:
- Likelihood
- How much does a certain hypothesis explain the data?
- Prior
- What do you believe before seeing any data?
- Posterior
- What do we believe after seeing the data?

Entropy

- Measures the amount of ambiguity or uncertainty in a distribution:

$$
H(p)=-\sum_{x} p(x) \log p(x)
$$

- Expected value of $-\log p(x)$ (a function which depends on $\mathrm{p}(\mathrm{x})!$).
- $H(p)>0$ unless only one possible outcomein which case $H(p)=0$.
- Maximal value when p is uniform.
- Tells you the expected "cost" if each event costs $-\log p$ (event)

KL-Divergence / Relative Entropy

- An assymetric measure of the distancebetween two distributions:

$$
K L[p \| q]=\sum_{x} p(x)[\log p(x)-\log q(x)]
$$

- $K L>0$ unless $p=q$ then $K L=0$
- Tells you the extra cost if events were generated by $p(x)$ but instead of charging under $p(x)$ you charged under $q(x)$.

Original Gaussian PDF's

KL Area to be Integrated

(C) Dhruv Batra

- End of Prob. Review
- Start of Estimation

