ECE 5984: Introduction to Machine Learning

Topics:

- Supervised Learning
 - Measuring performance
- Nearest Neighbour

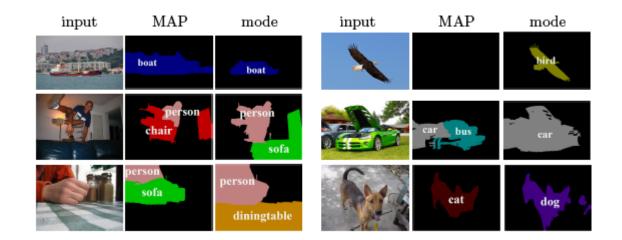
Readings: Barber 14 (kNN)

Dhruv Batra Virginia Tech

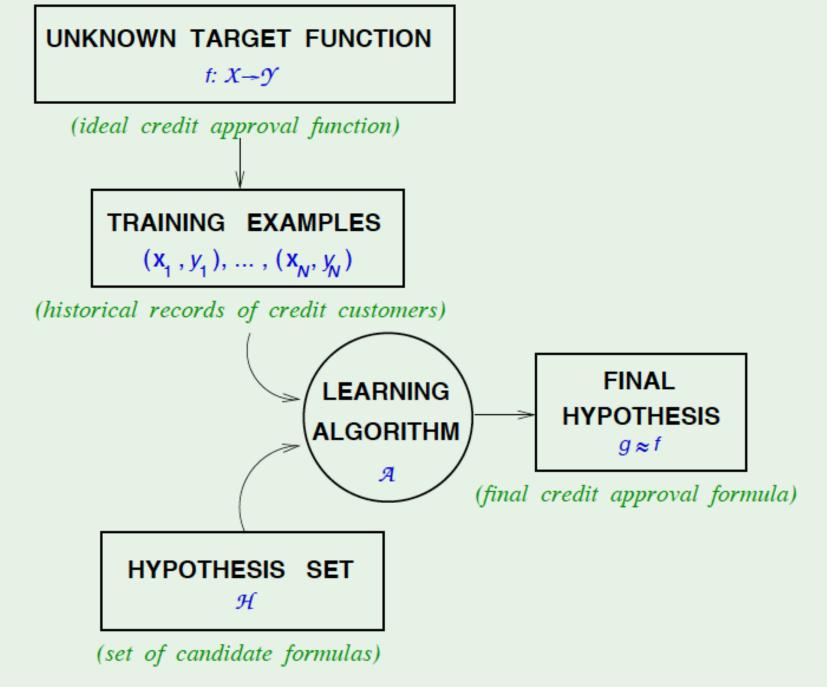
TA: Qing Sun

- PhD candidate at ECE department
- Research work/interest:

- Diverse outputs based on structured probabilistic models
- Structured-output prediction



Recap from last time



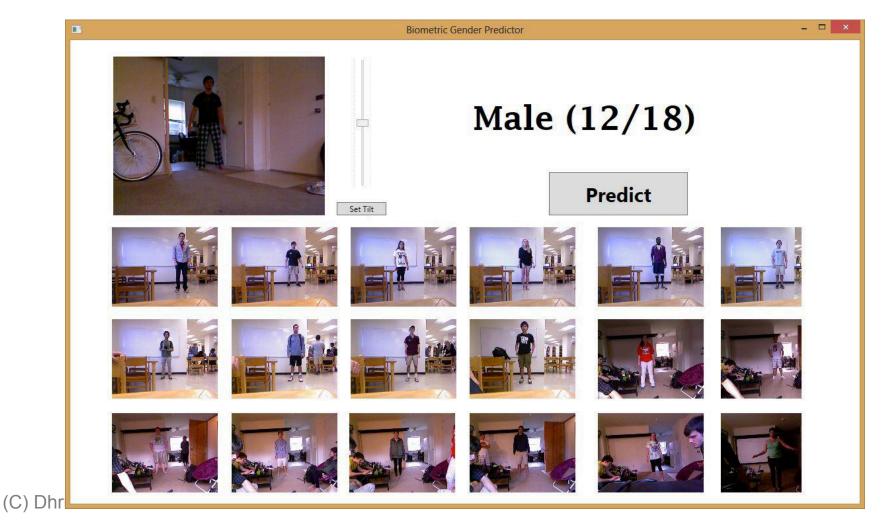
Slide Credit: Yaser Abu-Mostapha

Nearest Neighbour

- Demo 1
 - <u>http://cgm.cs.mcgill.ca/~soss/cs644/projects/perrier/</u> <u>Nearest.html</u>
- Demo 2
 - <u>http://www.cs.technion.ac.il/~rani/LocBoost/</u>

Spring 2013 Projects

- Gender Classification from body proportions
 - Igor Janjic & Daniel Friedman, Juniors



Plan for today

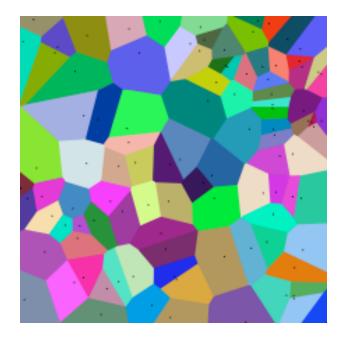
- Supervised/Inductive Learning
 - (A bit more on) Loss functions

- Nearest Neighbour
 - Common Distance Metrics
 - Kernel Classification/Regression
 - Curse of Dimensionality

Loss/Error Functions

- How do we measure performance?
- Regression:
 - $-L_2$ error
- Classification:
 - #misclassifications
 - Weighted misclassification via a cost matrix
 - For 2-class classification:
 - True Positive, False Positive, True Negative, False Negative
 - For k-class classification:
 - Confusion Matrix
- ROC curves
 - http://psych.hanover.edu/JavaTest/SDT/ROC.html

Nearest Neighbours



Instance/Memory-based Learning

Four things make a memory based learner:

• A distance metric

• How many nearby neighbors to look at?

• A weighting function (optional)

• How to fit with the local points?

1-Nearest Neighbour

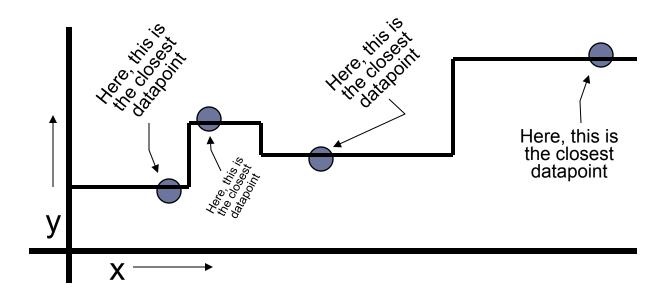
Four things make a memory based learner:

- A distance metric
 - Euclidean (and others)
- How many nearby neighbors to look at?
 1
- A weighting function (optional)
 unused
- How to fit with the local points?
 - Just predict the same output as the nearest neighbour.

k-Nearest Neighbour

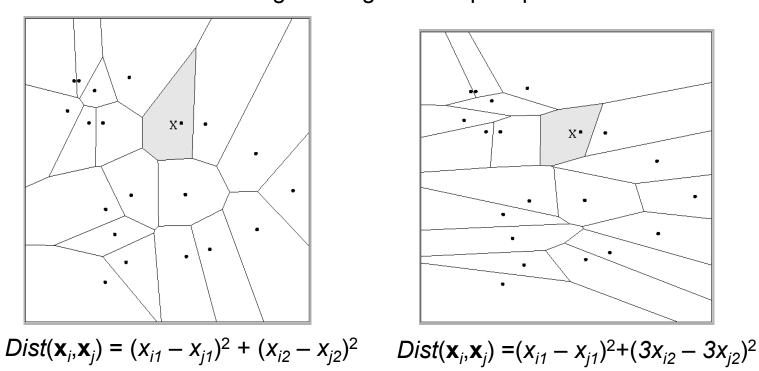
Four things make a memory based learner:

- A distance metric
 - Euclidean (and others)
- How many nearby neighbors to look at?
 k
- A weighting function (optional)
 unused
- How to fit with the local points?
 - Just predict the average output among the nearest neighbours.



Multivariate distance metrics

Suppose the input vectors $\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_N$ are two dimensional: $\mathbf{x}_1 = (x_{11}, x_{12}), \mathbf{x}_2 = (x_{21}, x_{22}), \dots \mathbf{x}_N = (x_{N1}, x_{N2}).$ One can draw the nearest-neighbor regions in input space.



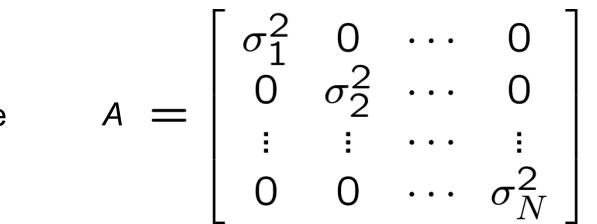
The relative scalings in the distance metric affect region shapes

Slide Credit: Carlos Guestrin

Euclidean distance metric

$$D(x, x') = \sqrt{\sum_{i} \sigma_i^2 (x_i - x'_i)^2}$$

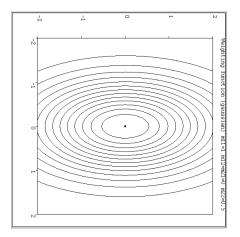
$$D(x, x') = \sqrt{(x_i - x'_i)^T A(x_i - x'_i)}$$



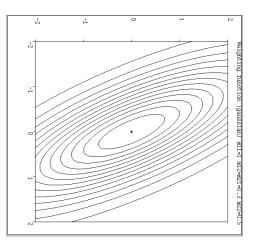
Or equivalently,

where

Notable distance metrics (and their level sets)

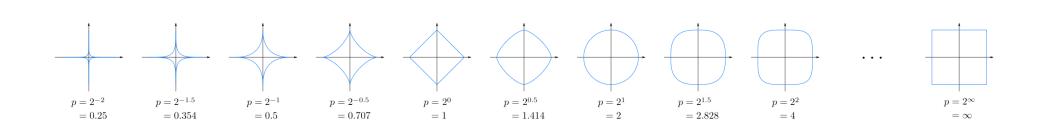


Scaled Euclidian (L₂)



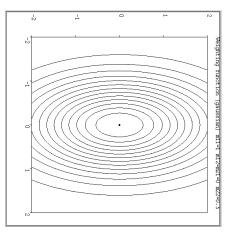
Mahalanobis (non-diagonal A)

Minkowski distance

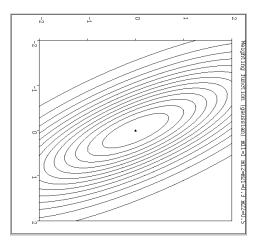


(C) Dhruv Batra [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

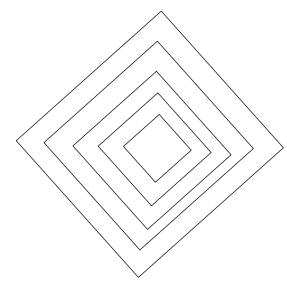
Notable distance metrics (and their level sets)



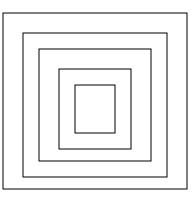
Scaled Euclidian (L₂)



Mahalanobis (non-diagonal A)



L₁ norm (absolute)



L_{inf} (max) norm

Slide Credit: Carlos Guestrin

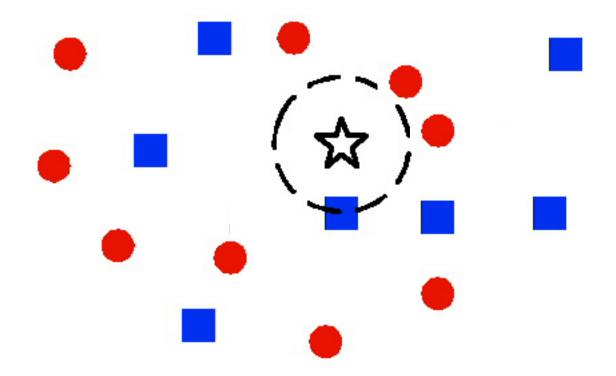
Parametric vs Non-Parametric Models

- Does the capacity (size of hypothesis class) grow with size of training data?
 - Yes = Non-Parametric Models
 - No = Parametric Models
- Example
 - <u>http://www.theparticle.com/applets/ml/nearest_neighbor/</u>

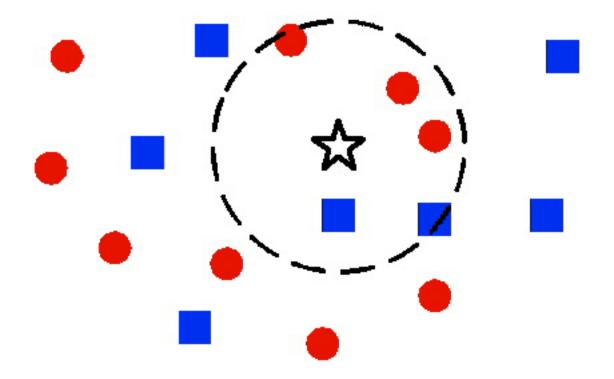
Weighted k-NNs

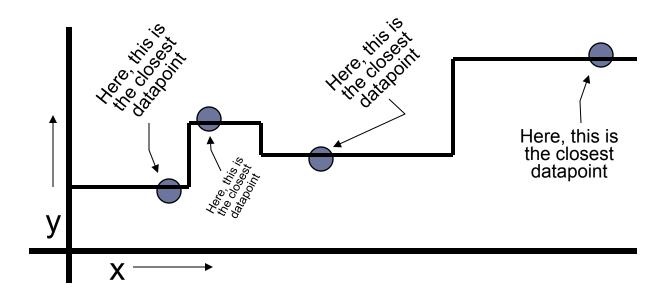
• Neighbors are not all the same

1 vs k Nearest Neighbour

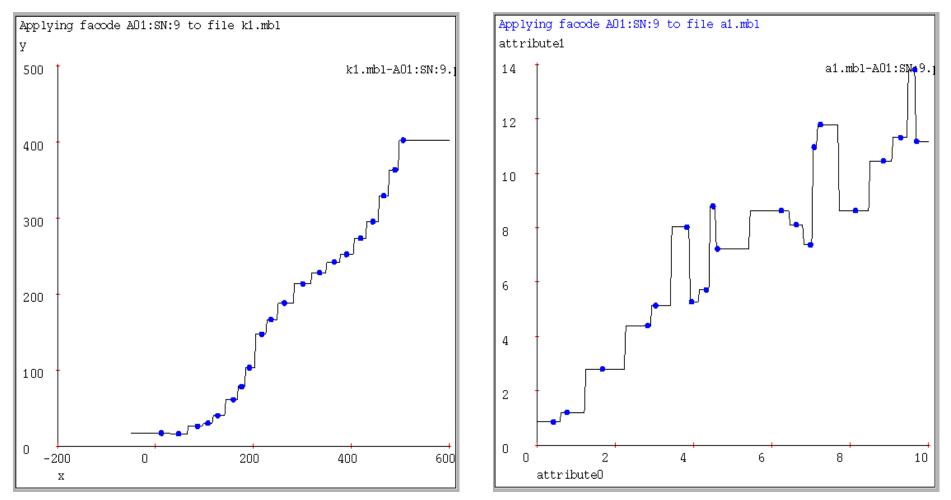


1 vs k Nearest Neighbour

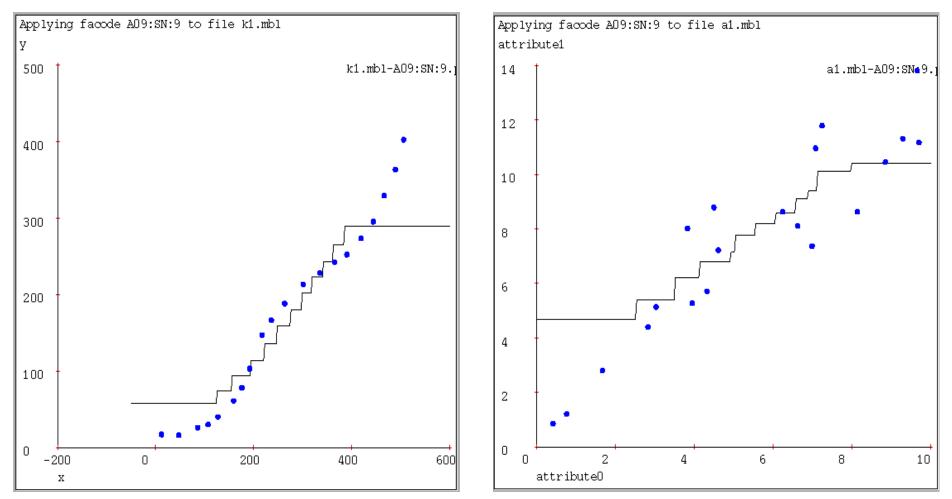




• Often bumpy (overfits)



• Often bumpy (overfits)



Kernel Regression/Classification

Four things make a memory based learner:

- A distance metric
 - Euclidean (and others)
- How many nearby neighbors to look at?
 All of them
- A weighting function (optional)
 - $w_i = \exp(-d(x_i, query)^2 / \sigma^2)$
 - Nearby points to the query are weighted strongly, far points weakly. The σ parameter is the Kernel Width. Very important.
- How to fit with the local points?
 - Predict the weighted average of the outputs predict = $\sum w_i y_i / \sum w_i$