ECE 5984: Introduction to Machine Learning

Topics:

- Supervised Learning
 - General Setup, learning from data
- Nearest Neighbour

Readings: Barber 14 (kNN)

Dhruv Batra Virginia Tech

Administrativia

- New class room
 - GBJ 102
- More space
 - Force-adds approved
- Scholar
 - Anybody not have access?
 - Still have problems reading/submitting? Resolve ASAP.
 - Please post questions on Scholar Forum.
 - Please check scholar forums. You might not know you have a doubt.

Administrativia

- Reading/Material/Pointers
 - Slides on Scholar
 - Scanned handwritten notes on Scholar
 - Readings/Video pointers on Public Website

Administrativia

- Computer Vision & Machine Learning Reading Group
 - Meet: Fridays 5-6pm
 - Reading CV/ML conference papers
 - Whittemore 654

Plan for today

- Supervised/Inductive Learning
 - Setup
 - Goal: Classification, Regression
 - Procedural View
 - Statistical Estimation View
 - Loss functions

Your first classifier: k-Nearest Neighbour

Types of Learning

- Supervised learning
 - Training data includes desired outputs
- Unsupervised learning
 - Training data does not include desired outputs
- Weakly or Semi-supervised learning
 - Training data includes a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

Supervised / Inductive Learning

- Given
 - examples of a function (x, f(x))
- Predict function f(x) for new examples x
 - Discrete f(x): Classification
 - Continuous f(x): Regression
 - f(x) = Probability(x): Probability estimation

Appropriate Applications for Supervised Learning

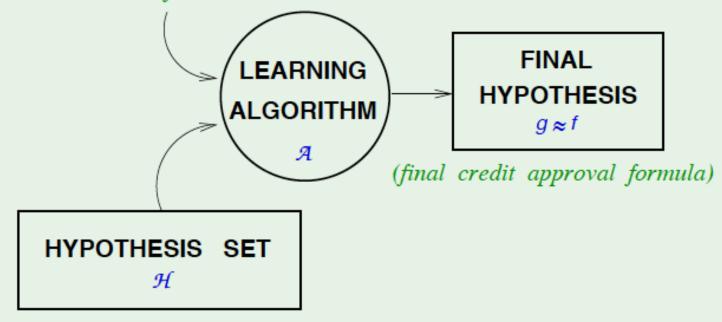
- Situations where there is no human expert
 - **x**: Bond graph for a new molecule.
 - $f(\mathbf{x})$: Predicted binding strength to AIDS protease molecule.
- Situations where humans can perform the task but can't describe how they do it.
 - **x**: Bitmap picture of hand-written character
 - $f(\mathbf{x})$: Ascii code of the character
- Situations where the desired function is changing frequently
 - **x**: Description of stock prices and trades for last 10 days.
 - $f(\mathbf{x})$: Recommended stock transactions
- ullet Situations where each user needs a customized function f
 - x: Incoming email message.
 - $f(\mathbf{x})$: Importance score for presenting to user (or deleting without presenting).

Supervised Learning

- Input: x (images, text, emails...)
- Output: y (spam or non-spam...)
- (Unknown) Target Function
 f: X → Y (the "true" mapping / reality)
- Data

$$-(x_1,y_1), (x_2,y_2), ..., (x_N,y_N)$$

- Model / Hypothesis Class
 - $-g:X \rightarrow Y$
 - $y = g(x) = sign(w^Tx)$
- Learning = Search in hypothesis space
 - Find best g in model class.


UNKNOWN TARGET FUNCTION

(ideal credit approval function)

TRAINING EXAMPLES

$$(\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{N}, y_{N})$$

(historical records of credit customers)

(set of candidate formulas)

Basic Steps of Supervised Learning

Set up a supervised learning problem

Data collection

 Start with training data for which we know the correct outcome provided by a teacher or oracle.

Representation

Choose how to represent the data.

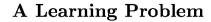
Modeling

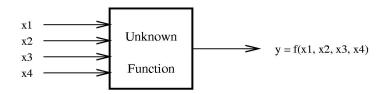
Choose a hypothesis class: H = {g: X → Y}

Learning/Estimation

Find best hypothesis you can in the chosen class.

Model Selection


Try different models. Picks the best one. (More on this later)


If happy stop

Else refine one or more of the above

Learning is hard!

No assumptions = No learning

Example	x_1	x_2	x_3	x_4	y
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	1	1	1
4	1	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0
7	0	1	0	1	0

(C) Dhruv Batra

Klingon vs Mlingon Classification

- Training Data
 - Klingon: klix, kour, koop
 - Mlingon: moo, maa, mou
- Testing Data: kap
- Which language?
- Why?

Loss/Error Functions

- How do we measure performance?
- Regression:
 - L₂ error
- Classification:
 - +misclassifications
 - Weighted misclassification via a cost matrix
 - For 2-class classification:
 - True Positive, False Positive, True Negative, False Negative
 - For k-class classification:
 - Confusion Matrix

Training vs Testing

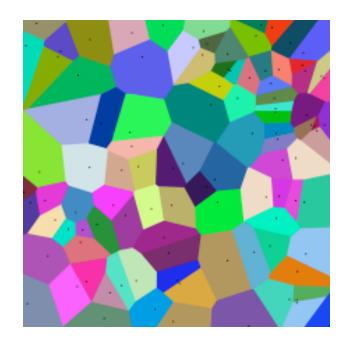
- What do we want?
 - Good performance (low loss) on training data?
 - No, Good performance on unseen test data!
- Training Data:
 - $\{ (x_1,y_1), (x_2,y_2), ..., (x_N,y_N) \}$
 - Given to us for learning f
- Testing Data
 - $\{ x_1, x_2, ..., x_M \}$
 - Used to see if we have learnt anything

Procedural View

- Training Stage:
 - Raw Data → x (Feature Extraction)
 - Training Data $\{(x,y)\} \rightarrow f$ (Learning)
- Testing Stage
 - Raw Data → x (Feature Extraction)
 - Test Data $x \rightarrow f(x)$ (Apply function, Evaluate error)

Statistical Estimation View

- Probabilities to rescue:
 - x and y are random variables
 - $-D = (x_1, y_1), (x_2, y_2), ..., (x_N, y_N) \sim P(X, Y)$
- IID: Independent Identically Distributed
 - Both training & testing data sampled IID from P(X,Y)
 - Learn on training set
 - Have some hope of generalizing to test set


Concepts

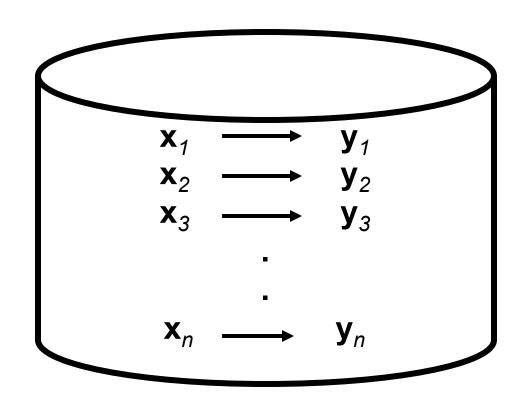
- Capacity
 - Measure how large hypothesis class H is.
 - Are all functions allowed?
- Overfitting
 - f works well on training data
 - Works poorly on test data
- Generalization
 - The ability to achieve low error on new test data

Guarantees

- 20 years of research in Learning Theory oversimplified:
- If you have:
 - Enough training data D
 - and H is not too complex
 - then probably we can generalize to unseen test data

New Topic: Nearest Neighbours

Synonyms


- Nearest Neighbours
- k-Nearest Neighbours
- Member of following families:
 - Instance-based Learning
 - Memory-based Learning
 - Exemplar methods
 - Non-parametric methods

Nearest Neighbor is an example of.... Instance-based learning

Has been around since about 1910.

To make a prediction, search database for similar datapoints, and fit with the local points.

Assumption: Nearby points behavior similarly wrt y

Instance/Memory-based Learning

Four things make a memory based learner:

A distance metric

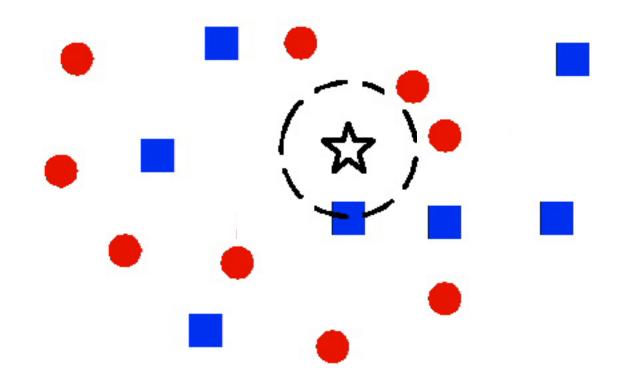
How many nearby neighbors to look at?

A weighting function (optional)

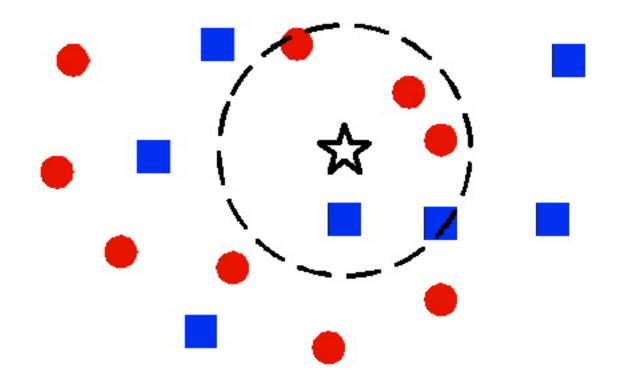
How to fit with the local points?

1-Nearest Neighbour

Four things make a memory based learner:


- A distance metric
 - Euclidean (and others)
- How many nearby neighbors to look at?
 - 1
- A weighting function (optional)
 - unused
- How to fit with the local points?
 - Just predict the same output as the nearest neighbour.

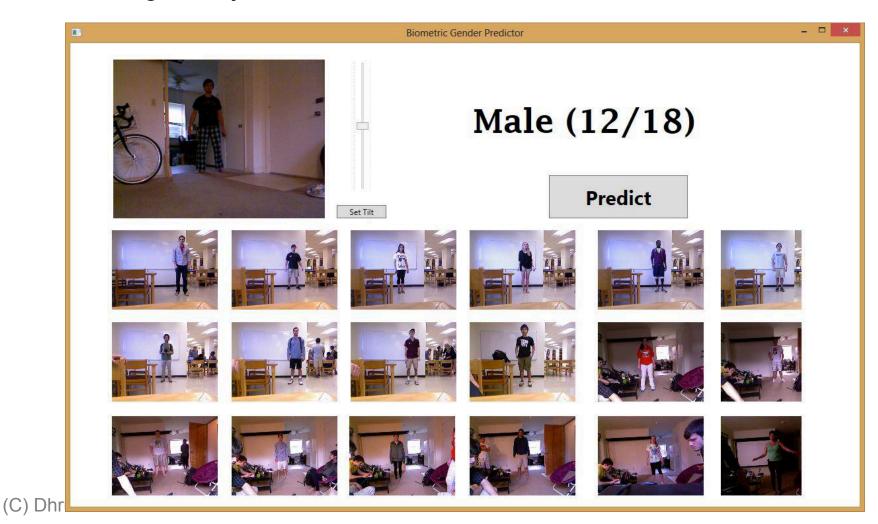
k-Nearest Neighbour


Four things make a memory based learner:

- A distance metric
 - Euclidean (and others)
- How many nearby neighbors to look at?
 - $-\mathbf{k}$
- A weighting function (optional)
 - unused
- How to fit with the local points?
 - Just predict the average output among the nearest neighbours.

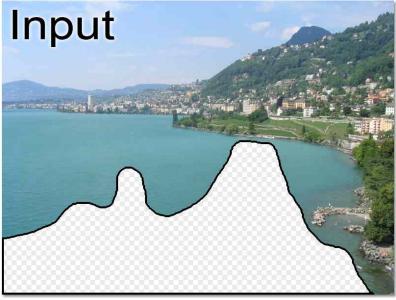
1 vs k Nearest Neighbour

1 vs k Nearest Neighbour



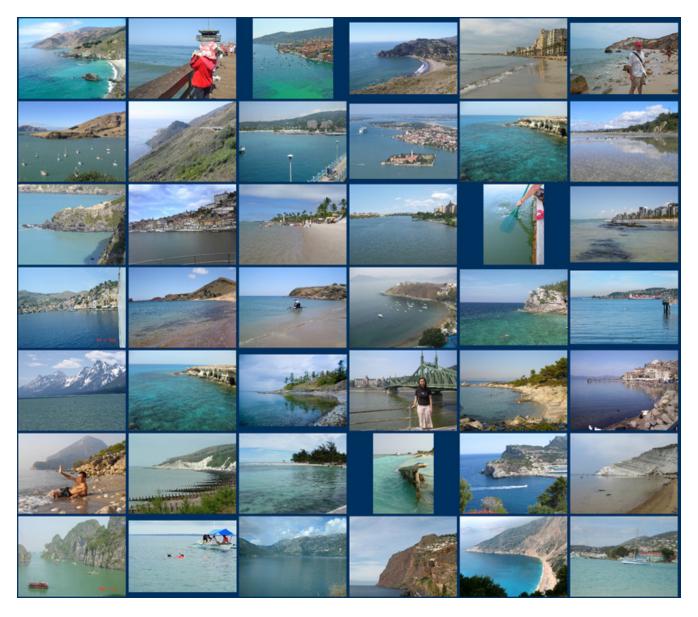
Nearest Neighbour

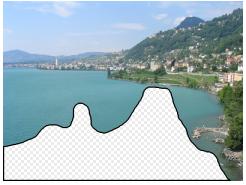
- Demo 1
 - http://cgm.cs.mcgill.ca/~soss/cs644/projects/perrier/
 Nearest.html
- Demo 2
 - http://www.cs.technion.ac.il/~rani/LocBoost/

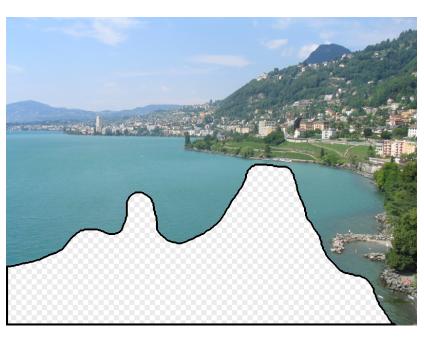

Spring 2013 Projects

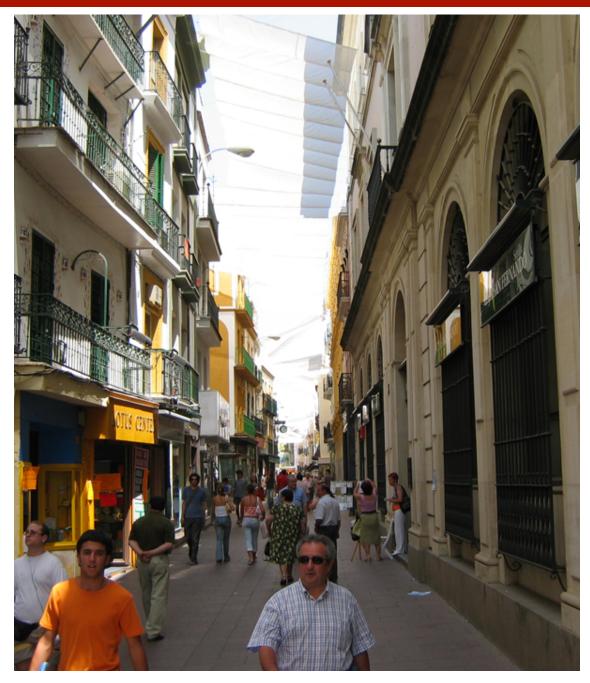
- Gender Classification from body proportions
 - Igor Janjic & Daniel Friedman, Juniors

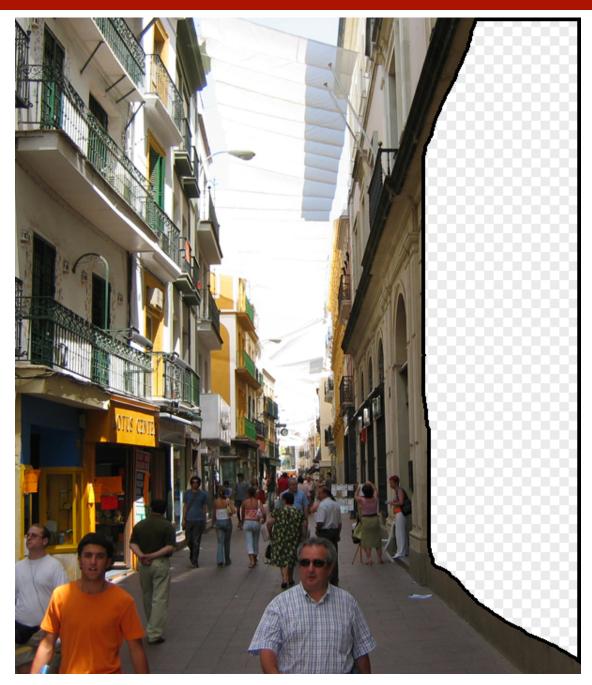
Scene Completion [Hayes & Efros, SIGGRAPH07]








... 200 total


Context Matching

