
ECE 5984: Introduction to  
Machine Learning 

 
Dhruv Batra  
Virginia Tech 

Topics:  
–  (Finish) Expectation Maximization  
–  Principal Component Analysis (PCA) 

 

Readings: Barber 15.1-15.4 



Administrativia 
•  Poster Presentation: 

–  May 8 1:30-4:00pm 
–  310 Kelly Hall: ICTAS Building  
–  Print poster (or bunch of slides) 
–  Format: 

•  Portrait  
•  Make 1 dimen = 36in 
•  Board size = 30x40 

–  Less text, more pictures. 
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Best Project Prize! 



Administrativia 
•  Final Exam 

–  When: May 11 7:45-9:45am   
–  Where: In class     

–  Format: Pen-and-paper.  
–  Open-book, open-notes, closed-internet.  

•  No sharing. 

–  What to expect: mix of  
•  Multiple Choice or True/False questions 
•  “Prove this statement”  
•  “What would happen for this dataset?” 

–  Material 
•  Everything! 
•  Focus on the recent stuff.  
•  Exponentially decaying weights? Optimal policy? 
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Recap of Last Time 
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K-means 

1.  Ask user how many 
clusters they’d like. 

(e.g. k=5)  

2.  Randomly guess k 
cluster Center 

locations 

3.  Each datapoint finds 
out which Center it’s 

closest to. 

4.  Each Center finds 
the centroid of the 

points it owns… 

5.  …and jumps there 

6.  …Repeat until 
terminated! 5 (C) Dhruv Batra  Slide Credit: Carlos Guestrin 



•  Optimize objective function: 

•  Fix µ, optimize a (or C) 
–  Assignment Step 

•  Fix a (or C), optimize µ	

–  Recenter Step 
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K-means as Co-ordinate Descent 

min
µ1,...,µk

min
a1,...,aN

F (µ,a) = min
µ1,...,µk

min
a1,...,aN

NX

i=1

kX

j=1

aij ||xi � µj ||2



GMM 
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Figure Credit: Kevin Murphy 



K-means vs GMM 
•  K-Means 

–  http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/
AppletKM.html 

•  GMM 
–  http://www.socr.ucla.edu/applets.dir/mixtureem.html 
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EM 
•  Expectation Maximization [Dempster ‘77] 

•  Often looks like “soft” K-means 

•  Extremely general 
•  Extremely useful algorithm 

–  Essentially THE goto algorithm for unsupervised learning 

•  Plan 
–  EM for learning GMM parameters 
–  EM for general unsupervised learning problems 
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EM for Learning GMMs 
•  Simple Update Rules 

–  E-Step: estimate P(zi = j | xi) 
–  M-Step: maximize full likelihood weighted by posterior 
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Gaussian Mixture Example: Start 
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After 1st iteration 
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After 2nd iteration 
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After 3rd iteration 
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After 4th iteration 
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After 5th iteration 
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After 6th iteration 
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After 20th iteration 
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General Mixture Models 
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P(x | z) P(z) Name 
Gaussian Categorial GMM 
Multinomial Categorical Mixture of Multinomials  
Categorical Dirichlet Latent Dirichlet Allocation 



Mixture of Bernoullis 
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•  Marginal likelihood – x is observed, z is missing: 

The general learning problem with missing data 

21 (C) Dhruv Batra  

ll(� : D) = log

NY

i=1

P (xi | �)

=

NX

i=1

logP (xi | �)

=

NX

i=1

log

X

z

P (xi, z | �)



Applying Jensen’s inequality 

•  Use:  log ∑z P(z) f(z) ≥ ∑z P(z) log f(z)  
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ll(� : D) =

NX

i=1

log

X

z

Qi(z)
P (xi, z | �)

Qi(z)



Convergence of EM 

•  Define potential function F(θ,Q): 

•  EM corresponds to coordinate ascent on F 
–  Thus, maximizes lower bound on marginal log likelihood 
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ll(� : D) � F (�, Qi) =

NX

i=1

X

z

Qi(z) log
P (xi, z | �)

Qi(z)



EM is coordinate ascent 

•  E-step: Fix θ(t), maximize F over Q: 

–  “Realigns” F with likelihood:  
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ll(� : D) � F (�, Qi) =

NX

i=1

X

z

Qi(z) log
P (xi, z | �)

Qi(z)

Q(t)
i (z) = P (z | xi, �

(t))

F (�(t), Q(t)) = ll(�(t) : D)

F (�, Qi) =

NX

i=1

X

z

Qi(z) log
P (xi, z | �(t))

Qi(z)
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NX

i=1

X

z

Qi(z) log
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NX
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X
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NX
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X

z

Qi(z) log
P (z | xi, �(t))
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= ll(�(t) : D)�
NX

i=1

KL(Qi(z)||P (z | xi, �
(t)
)



EM is coordinate ascent 

•  M-step: Fix Q(t), maximize F over θ	


•  Corresponds to weighted dataset: 
–  <x1,z=1> with weight Q(t+1)(z=1|x1) 
–  <x1,z=2> with weight Q(t+1)(z=2|x1) 
–  <x1,z=3> with weight Q(t+1)(z=3|x1) 
–  <x2,z=1> with weight Q(t+1)(z=1|x2) 
–  <x2,z=2> with weight Q(t+1)(z=2|x2) 
–  <x2,z=3> with weight Q(t+1)(z=3|x2) 
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EM Intuition 
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Q(θ,θ
t
)

Q(θ,θ
t+1
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l(θ)

θ
t

θ
t+1

θ
t+2



What you should know 
•  K-means for clustering: 

–  algorithm 
–  converges because it’s coordinate ascent 

•  EM for mixture of Gaussians: 
–  How to “learn” maximum likelihood parameters (locally max. 

like.) in the case of unlabeled data 

•  EM is coordinate ascent 
•  Remember, E.M. can get stuck in local minima, and 

empirically it DOES 

•  General case for EM 
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Tasks 
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Classification x y 

Regression x y 

Discrete 

Continuous 

Clustering x c Discrete ID 

Dimensionality 
Reduction 

x z Continuous 



New Topic: PCA 



Synonyms 
•  Principal Component Analysis 
•  Karhunen–Loève transform 

•  Eigen-Faces 
•  Eigen-<Insert-your-problem-domain> 

•  PCA is a Dimensionality Reduction Algorithm 

•  Other Dimensionality Reduction algorithms 
–  Linear Discriminant Analysis (LDA) 
–  Independent Component Analysis (ICA) 
–  Local Linear Embedding (LLE) 
–  … 
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Dimensionality reduction 
•  Input data may have thousands or millions of 

dimensions! 
–  e.g., images have 5M pixels 

•  Dimensionality reduction:  
represent data with fewer dimensions 
–  easier learning – fewer parameters 
–  visualization – hard to visualize more than 3D or 4D 
–  discover “intrinsic dimensionality” of data 

•  high dimensional data that is truly lower dimensional  



Dimensionality Reduction 
•  Demo 

–  http://lcn.epfl.ch/tutorial/english/pca/html/ 

–  http://setosa.io/ev/principal-component-analysis/ 
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PCA / KL-Transform 
•  De-correlation view 

–  Make features uncorrelated 
–  No projection yet 

•  Max-variance view: 
–  Project data to lower dimensions 
–  Maximize variance in lower dimensions 

•  Synthesis / Min-error view: 
–  Project data to lower dimensions 
–  Minimize reconstruction error  

•  All views lead to same solution 
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