ECE 5984: Introduction to Machine Learning

Topics:

- (Finish) Expectation Maximization
- Principal Component Analysis (PCA)

Readings: Barber 15.1-15.4

Dhruv Batra Virginia Tech

Administrativia

Poster Presentation: Best Project Prize! ullet

- May 8 1:30-4:00pm
- 310 Kelly Hall: ICTAS Building
- Print poster (or bunch of slides)
- Format:
 - Portrait
 - Make 1 dimen = 36in
 - Board size = 30x40
- Less text, more pictures.

Administrativia

- Final Exam
 - When: May 11 7:45-9:45am
 - Where: In class
 - Format: Pen-and-paper.
 - Open-book, open-notes, closed-internet.
 - No sharing.
 - What to expect: mix of
 - Multiple Choice or True/False questions
 - "Prove this statement"
 - "What would happen for this dataset?"
 - Material
 - Everything!
 - Focus on the recent stuff.
 - Exponentially decaying weights? Optimal policy?

Recap of Last Time

K-means

- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
 - 4. Each Center finds the centroid of the points it owns...
 - 5. ...and jumps there

6. ...Repeat until (C) Dhruv Baterminated!

Slide Credit: Carlos Guestrin

K-means as Co-ordinate Descent

• Optimize objective function:

 $\min_{\mu_1,...,\mu_k} \min_{a_1,...,a_N} F(\mu, a) = \min_{\mu_1,...,\mu_k} \min_{a_1,...,a_N} \sum_{i=1}^N \sum_{j=1}^k a_{ij} ||\mathbf{x}_i - \mu_j||^2$

- Fix μ, optimize a (or C)
 - Assignment Step
- Fix a (or C), optimize μ
 Recenter Step

K-means vs GMM

- K-Means
 - <u>http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/</u>
 <u>AppletKM.html</u>
- GMM
 - http://www.socr.ucla.edu/applets.dir/mixtureem.html

ΕM

- Expectation Maximization [Dempster '77]
- Often looks like "soft" K-means
- Extremely general
- Extremely useful algorithm
 - Essentially THE goto algorithm for unsupervised learning

• Plan

- EM for learning GMM parameters
- EM for general unsupervised learning problems

EM for Learning GMMs

- Simple Update Rules
 - E-Step: estimate $P(z_i = j | x_i)$
 - M-Step: maximize full likelihood weighted by posterior

Gaussian Mixture Example: Start

Slide Credit: Carlos Guestrin

After 1st iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

General Mixture Models

P(x z)	P(z)	Name
Gaussian	Categorial	GMM
Multinomial	Categorical	Mixture of Multinomials
Categorical	Dirichlet	Latent Dirichlet Allocation

Mixture of Bernoullis

(C) Dhruv Batra

The general learning problem with missing data

• Marginal likelihood – **x** is observed, **z** is missing:

$$ll(\theta : D) = \log \prod_{i=1}^{N} P(\mathbf{x}_i \mid \theta)$$
$$= \sum_{i=1}^{N} \log P(\mathbf{x}_i \mid \theta)$$
$$= \sum_{i=1}^{N} \log \sum_{\mathbf{z}} P(\mathbf{x}_i, \mathbf{z} \mid \theta)$$

Applying Jensen's inequality

• Use: $\log \sum_{z} P(z) f(z) \ge \sum_{z} P(z) \log f(z)$

$$ll(\theta:\mathcal{D}) = \sum_{i=1}^{N} \log \sum_{\mathbf{z}} Q_i(\mathbf{z}) \frac{P(\mathbf{x}_i, \mathbf{z} \mid \theta)}{Q_i(\mathbf{z})}$$

Convergence of EM

• Define potential function $F(\theta, Q)$:

$$ll(\theta : \mathcal{D}) \ge F(\theta, Q_i) = \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i(\mathbf{z}) \log \frac{P(\mathbf{x}_i, \mathbf{z} \mid \theta)}{Q_i(\mathbf{z})}$$

- EM corresponds to coordinate ascent on F
 - Thus, maximizes lower bound on marginal log likelihood

EM is coordinate ascent

$$ll(\theta: \mathcal{D}) \ge F(\theta, Q_i) = \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i(\mathbf{z}) \log \frac{P(\mathbf{x}_i, \mathbf{z} \mid \theta)}{Q_i(\mathbf{z})}$$

• **E-step**: Fix $\theta^{(t)}$, maximize F over Q:

$$F(\theta, Q_i) = \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i(\mathbf{z}) \log \frac{P(\mathbf{x}_i, \mathbf{z} \mid \theta^{(t)})}{Q_i(\mathbf{z})}$$

$$= \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i(\mathbf{z}) \log \frac{P(\mathbf{z} \mid \mathbf{x}_i, \theta) P(\mathbf{x}_i \mid \theta^{(t)})}{Q_i(\mathbf{z})}$$

$$= \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i(\mathbf{z}) \log P(\mathbf{x}_i \mid \theta^{(t)}) + \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i(\mathbf{z}) \log \frac{P(\mathbf{z} \mid \mathbf{x}_i, \theta^{(t)})}{Q_i(\mathbf{z})}$$

$$= ll(\theta^{(t)} : \mathcal{D}) - \sum_{i=1}^{N} KL(Q_i(\mathbf{z})) || P(\mathbf{z} \mid \mathbf{x}_i, \theta^{(t)})$$

- "Realigns" F with likelihood:

$$Q_i^{(t)}(\mathbf{z}) = P(\mathbf{z} \mid \mathbf{x}_i, \theta^{(t)})$$

$$F(\theta^{(t)}, Q^{(t)}) = ll(\theta^{(t)} : \mathcal{D})$$

EM is coordinate ascent

$$ll(\theta: \mathcal{D}) \geq F(\theta, Q_i) = \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i(\mathbf{z}) \log \frac{P(\mathbf{x}_i, \mathbf{z} \mid \theta)}{Q_i(\mathbf{z})}$$

• **M-step**: Fix $Q^{(t)}$, maximize F over θ

$$F(\theta, Q_i) = \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i^{(t)}(\mathbf{z}) \log \frac{P(\mathbf{x}_i, \mathbf{z} \mid \theta)}{Q_i^{(t)}(\mathbf{z})}$$
$$= \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i^{(t)}(\mathbf{z}) \log P(\mathbf{x}_i, \mathbf{z} \mid \theta) - \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i^{(t)}(\mathbf{z}) \log Q_i^{(t)}(\mathbf{z})$$
$$= \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i^{(t)}(\mathbf{z}) \log P(\mathbf{x}_i, \mathbf{z} \mid \theta) + \sum_{i=1}^{N} \underbrace{H(Q_i^{(t)})}_{\text{constant}}$$

- Corresponds to weighted dataset:
 - $< x_1, z=1 >$ with weight Q^(t+1)(z=1|x_1)
 - $< x_1, z=2 >$ with weight Q^(t+1)($z=2|x_1$)
 - $< x_1, z=3 >$ with weight Q^(t+1)(z=3|x_1)
 - $< x_2, z=1 >$ with weight Q^(t+1)(z=1|x₂)
 - $< x_2, z=2 >$ with weight Q^(t+1)($z=2|x_2$)
 - $< x_2, z=3 >$ with weight Q^(t+1)(z=3|x₂)

(C) Dhruv Batra

EM Intuition

(C) Dhruv Batra

What you should know

- K-means for clustering:
 - algorithm
 - converges because it's coordinate ascent
- EM for mixture of Gaussians:
 - How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
- EM is coordinate ascent
- Remember, E.M. can get stuck in local minima, and empirically it <u>DOES</u>
- General case for EM

New Topic: PCA

Synonyms

- Principal Component Analysis
- Karhunen–Loève transform
- Eigen-Faces
- Eigen-<Insert-your-problem-domain>
- PCA is a Dimensionality Reduction Algorithm
- Other Dimensionality Reduction algorithms
 - Linear Discriminant Analysis (LDA)
 - Independent Component Analysis (ICA)
 - Local Linear Embedding (LLE)

(C) Dhruv Batra

. . .

Dimensionality reduction

- Input data may have thousands or millions of dimensions!
 - e.g., images have 5M pixels
- Dimensionality reduction:

represent data with fewer dimensions

- easier learning fewer parameters
- visualization hard to visualize more than 3D or 4D
- discover "intrinsic dimensionality" of data
 - high dimensional data that is truly lower dimensional

Dimensionality Reduction

- Demo
 - <u>http://lcn.epfl.ch/tutorial/english/pca/html/</u>
 - <u>http://setosa.io/ev/principal-component-analysis/</u>

PCA / KL-Transform

- De-correlation view
 - Make features uncorrelated
 - No projection yet
- Max-variance view:
 - Project data to lower dimensions
 - Maximize variance in lower dimensions
- Synthesis / Min-error view:
 - Project data to lower dimensions
 - Minimize reconstruction error
- All views lead to same solution