
ECE 5984: Introduction to  
Machine Learning 

 
Dhruv Batra  
Virginia Tech 

Topics:  
–  Expectation Maximization  

–  For GMMs 
–  For General Latent Model Learning 

 

Readings: Barber 20.1-20.3 



Administrativia 
•  Poster Presentation: 

–  May 8 1:30-4:00pm 
–  310 Kelly Hall: ICTAS Building  
–  Print poster (or bunch of slides) 
–  Format: 

•  Portrait  
•  Eg. 2 feet (width) x 4 feet (height) 

–  Less text, more pictures. 
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Best Project Prize! 



Recap of Last Time 
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Some Data 
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K-means 

1.  Ask user how many 
clusters they’d like. 

(e.g. k=5)  
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K-means 

1.  Ask user how many 
clusters they’d like. 

(e.g. k=5)  

2.  Randomly guess k 
cluster Center 

locations 
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K-means 

1.  Ask user how many 
clusters they’d like. 

(e.g. k=5)  

2.  Randomly guess k 
cluster Center 

locations 

3.  Each datapoint finds 
out which Center it’s 

closest to. (Thus 
each Center “owns” 
a set of datapoints) 
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K-means 

1.  Ask user how many 
clusters they’d like. 

(e.g. k=5)  

2.  Randomly guess k 
cluster Center 

locations 

3.  Each datapoint finds 
out which Center it’s 

closest to. 

4.  Each Center finds 
the centroid of the 

points it owns 
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K-means 

1.  Ask user how many 
clusters they’d like. 

(e.g. k=5)  

2.  Randomly guess k 
cluster Center 

locations 

3.  Each datapoint finds 
out which Center it’s 

closest to. 

4.  Each Center finds 
the centroid of the 

points it owns… 

5.  …and jumps there 

6.  …Repeat until 
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K-means 
•  Randomly initialize k centers 

–   µ(0) = µ1
(0),…, µk

(0) 

•  Assign:  
–  Assign each point i∈{1,…n} to nearest center: 
–    

•  Recenter:  
–  µj becomes centroid of its points 
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C(i) ⇥� argmin
j

||xi � µj ||2



•  Optimize objective function: 

•  Fix µ, optimize a (or C) 
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K-means as Co-ordinate Descent 

min
µ1,...,µk

min
a1,...,aN

F (µ,a) = min
µ1,...,µk

min
a1,...,aN

NX

i=1

kX

j=1

aij ||xi � µj ||2



•  Optimize objective function: 

•  Fix a (or C), optimize µ	
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K-means as Co-ordinate Descent 

min
µ1,...,µk

min
a1,...,aN

F (µ,a) = min
µ1,...,µk

min
a1,...,aN

NX

i=1

kX

j=1

aij ||xi � µj ||2



Object Bag of ‘words’ 

Fei-­‐Fei	
  Li	
  



Clustered Image Patches 

Fei-Fei et al. 2005 



(One) bad case for k-means 

•  Clusters may overlap 
•  Some clusters may be 

“wider” than others 

•  GMM to the rescue! 
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GMM 
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GMM 
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K-means vs GMM 
•  K-Means 

–  http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/
AppletKM.html 

•  GMM 
–  http://www.socr.ucla.edu/applets.dir/mixtureem.html 
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Hidden Data Causes Problems #1 
•  Fully Observed (Log) Likelihood factorizes 

•  Marginal (Log) Likelihood doesn’t factorize 

•  All parameters coupled!  
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Hidden Data Causes Problems #2 
•  Identifiability 
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Hidden Data Causes Problems #3 
•  Likelihood has singularities if one Gaussian 

“collapses” 
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Special case: spherical Gaussians 
and hard assignments 
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•  If P(X|Z=k) is spherical, with same σ for all classes: 

•  If each xi belongs to one class C(i) (hard 
assignment), marginal likelihood: 

•  M(M)LE same as K-means!!! 

P(xi, y = j)
j=1

k

∑
i=1

N

∏ ∝ exp − 1
2σ 2 xi −µC(i)
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P(xi | z = j)∝ exp −
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The K-means GMM assumption 

•  There are k components 

•  Component i has an associated 
mean vector µι	



µ1	



µ2	



µ3	
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The K-means GMM assumption 

•  There are k components 

•  Component i has an associated 
mean vector µι	



•  Each component generates data 
from a Gaussian with mean mi and 

covariance matrix σ2Ι  	



Each data point is generated 
according to the following recipe:  

µ1	



µ2	



µ3	
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The K-means GMM assumption 

•  There are k components 

•  Component i has an associated 
mean vector µι	



•  Each component generates data 
from a Gaussian with mean mi and 

covariance matrix σ2Ι   	



Each data point is generated 
according to the following recipe:  

 

1.  Pick a component at random: 
Choose component i with 

probability P(y=i) 

µ2	
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The K-means GMM assumption 
 

•  There are k components 

•  Component i has an associated 
mean vector µι	



•  Each component generates data 
from a Gaussian with mean mi and 

covariance matrix σ2Ι   	



Each data point is generated 
according to the following recipe:  

  

1.  Pick a component at random: 
Choose component i with 

probability P(y=i) 

2.  Datapoint ∼ Ν(µι, σ2Ι )	



µ2	



x 
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The General GMM assumption 

µ1	



µ2	



µ3	



•  There are k components 

•  Component i has an associated 
mean vector µι	



•  Each component generates data 
from a Gaussian with mean mi and 

covariance matrix Σi   	



Each data point is generated 
according to the following recipe:  

  

1.  Pick a component at random: 
Choose component i with 

probability P(y=i) 

2.  Datapoint ∼ Ν(µι, Σi )	
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K-means vs GMM 
•  K-Means 

–  http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/
AppletKM.html 

•  GMM 
–  http://www.socr.ucla.edu/applets.dir/mixtureem.html 
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EM 
•  Expectation Maximization [Dempster ‘77] 

•  Often looks like “soft” K-means 

•  Extremely general 
•  Extremely useful algorithm 

–  Essentially THE goto algorithm for unsupervised learning 

•  Plan 
–  EM for learning GMM parameters 
–  EM for general unsupervised learning problems 
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EM for Learning GMMs 
•  Simple Update Rules 

–  E-Step: estimate P(zi = j | xi) 
–  M-Step: maximize full likelihood weighted by posterior 
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Gaussian Mixture Example: Start 
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After 1st iteration 
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After 2nd iteration 
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After 3rd iteration 
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After 4th iteration 
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After 5th iteration 
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After 6th iteration 
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After 20th iteration 

38 (C) Dhruv Batra  Slide Credit: Carlos Guestrin 


