ECE 5984: Introduction to Machine Learning

Topics:

– Unsupervised Learning: Kmeans, GMM, EM

Readings: Barber 20.1-20.3

Dhruv Batra Virginia Tech

Midsem Presentations Graded

- Mean 8/10 = 80%
 - Min: 3
 - Max: 10

Tasks

Unsupervised Learning

Unsupervised Learning

- Learning only with X
 - Y not present in training data
- Some example unsupervised learning problems:
 - Clustering / Factor Analysis
 - Dimensionality Reduction / Embeddings
 - Density Estimation with Mixture Models

New Topic: Clustering

Slide Credit: Carlos Guestrin

Synonyms

- Clustering
- Vector Quantization
- Latent Variable Models
- Hidden Variable Models
- Mixture Models
- Algorithms:
 - K-means
 - Expectation Maximization (EM)

Some Data

1. Ask user how many clusters they'd like. *(e.g. k=5)*

- 1. Ask user how many clusters they'd like. *(e.g. k=5)*
- 2. Randomly guess k cluster Center locations

- 1. Ask user how many clusters they'd like. *(e.g. k=5)*
- 2. Randomly guess k cluster Center locations
- Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

- 1. Ask user how many clusters they'd like. *(e.g. k=5)*
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
 - 4. Each Center finds the centroid of the points it owns

- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
 - 4. Each Center finds the centroid of the points it owns...
 - 5. ...and jumps there

6. ...Repeat until (C) Dhruv Baterminated!

Slide Credit: Carlos Guestrin

- Randomly initialize k centers
 - $\mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$
- Assign:
 - Assign each point $i \in \{1, ..., n\}$ to nearest center:

$$- C(i) \longleftarrow \underset{j}{\operatorname{argmin}} ||\mathbf{x}_i - \boldsymbol{\mu}_j||^2$$

Recenter:

- μ_i becomes centroid of its points

- Demo
 - <u>http://www.kovan.ceng.metu.edu.tr/~maya/kmeans/</u>
 - <u>http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/</u>
 <u>AppletKM.html</u>

What is K-means optimizing?

Objective F(μ,C): function of centers μ and point allocations C:

-
$$F(\mu, C) = \sum_{i=1}^{N} ||\mathbf{x}_i - \mu_{C(i)}||^2$$

- 1-of-k encoding
$$F(\boldsymbol{\mu}, \boldsymbol{a}) = \sum_{i=1}^{N} \sum_{j=1}^{k} a_{ij} ||\mathbf{x}_i - \boldsymbol{\mu}_j||^2$$

- Optimal K-means:
 - $\min_{\mu} \min_{a} F(\mu, a)$

Coordinate descent algorithms

- Want: $\min_{a} \min_{b} F(a,b)$
- Coordinate descent:
 - fix a, minimize b
 - fix b, minimize a
 - repeat
- Converges!!!
 - if F is bounded
 - to a (often good) local optimum
 - as we saw in applet (play with it!)

• K-means is a coordinate descent algorithm!

K-means as Co-ordinate Descent

• Optimize objective function:

 $\min_{\mu_1,...,\mu_k} \min_{a_1,...,a_N} F(\mu, a) = \min_{\mu_1,...,\mu_k} \min_{a_1,...,a_N} \sum_{i=1}^N \sum_{j=1}^k a_{ij} ||\mathbf{x}_i - \mu_j||^2$

• Fix μ , optimize a (or C)

K-means as Co-ordinate Descent

• Optimize objective function:

$$\min_{\mu_1,...,\mu_k} \min_{a_1,...,a_N} F(\mu, a) = \min_{\mu_1,...,\mu_k} \min_{a_1,...,a_N} \sum_{i=1}^N \sum_{j=1}^k a_{ij} ||\mathbf{x}_i - \mu_j||^2$$

1

• Fix a (or C), optimize μ

One important use of K-means

• Bag-of-word models in computer vision

Bag of Words model

Fei-Fei Li

Interest Point Features

Detect patches [Mikojaczyk and Schmid '02] [Matas et al. '02] [Sivic et al. '03]

Slide credit: Josef Sivic

Patch Features

Slide credit: Josef Sivic

dictionary formation

Slide credit: Josef Sivic

Clustered Image Patches

Fei-Fei et al. 2005

Visual synonyms and polysemy

Visual Polysemy. Single visual word occurring on different (but locally similar) parts on different object categories.

Visual Synonyms. Two different visual words representing a similar part of an object (wheel of a motorbike).

Andrew Zisserman

Image representation

Fei-Fei Li

(One) bad case for k-means

- Clusters may overlap
- Some clusters may be "wider" than others
- GMM to the rescue!

(C) Dhruv Batra

Figure Credit: Kevin Murphy

Recall Multi-variate Gaussians

- Fully Observed (Log) Likelihood factorizes
- Marginal (Log) Likelihood doesn't factorize
- All parameters coupled!

GMM vs Gaussian Joint Bayes Classifier

- On Board
 - Observed Y vs Unobserved Z
 - Likelihood vs Marginal Likelihood

 Likelihood has singularities if one Gaussian "collapses"

Special case: spherical Gaussians and hard assignments

- If P(X|Z=k) is spherical, with same σ for all classes: $P(\mathbf{x}_i | z = j) \propto \exp\left[-\frac{1}{2\sigma^2} \|\mathbf{x}_i - \mu_j\|^2\right]$
- If each x_i belongs to one class C(i) (hard assignment), marginal likelihood:

$$\prod_{i=1}^{N} \sum_{j=1}^{k} P(\mathbf{x}_i, y=j) \propto \prod_{i=1}^{N} \exp\left[-\frac{1}{2\sigma^2} \left\|\mathbf{x}_i - \boldsymbol{\mu}_{C(i)}\right\|^2\right]$$

• M(M)LE same as K-means!!!

(C) Dhruv Batra

- There are k components
- Component *i* has an associated mean vector μ_{ι}

- There are k components
- Component *i* has an associated mean vector μ_{ι}
- Each component generates data from a Gaussian with mean m_i and covariance matrix $\sigma^2 I$

Each data point is generated according to the following recipe:

- There are k components
- Component *i* has an associated mean vector μ_i
 - Each component generates data from a Gaussian with mean m_i and covariance matrix $\sigma^2 I$

Each data point is generated according to the following recipe:

1. Pick a component at random: Choose component i with probability P(y=i)

- There are k components
- Component *i* has an associated mean vector μ_i
 - Each component generates data from a Gaussian with mean m_i and covariance matrix $\sigma^2 I$

Each data point is generated according to the following recipe:

- Pick a component at random: Choose component i with probability P(y=i)
 - 2. Datapoint ~ N($\mu_{\iota}, \sigma^2 I$)

The General GMM assumption

- There are k components
- Component *i* has an associated mean vector *m_i*
 - Each component generates data from a Gaussian with mean m_i and covariance matrix Σ_i

Each data point is generated according to the following recipe:

- 1. Pick a component at random: Choose component i with probability P(y=i)
 - 2. Datapoint ~ $N(m_i, \Sigma_i)$

 u_2

K-means vs GMM

- K-Means
 - <u>http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/</u>
 <u>AppletKM.html</u>
- GMM
 - http://www.socr.ucla.edu/applets.dir/mixtureem.html