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Midsem Presentations Graded 
•  Mean 8/10 = 80% 

–  Min: 3 
–  Max: 10 
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Tasks 
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Classification x y 

Regression x y 

Discrete 

Continuous 

Clustering x c Discrete ID 

Dimensionality 
Reduction 

x z Continuous 

Supervised Learning 

Unsupervised Learning 



Unsupervised Learning 
•  Learning only with X 

–  Y not present in training data 

•  Some example unsupervised learning problems: 
–  Clustering / Factor Analysis 
–  Dimensionality Reduction / Embeddings 
–  Density Estimation with Mixture Models 
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New Topic: Clustering 
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Synonyms 
•  Clustering 

•  Vector Quantization  

•  Latent Variable Models 
•  Hidden Variable Models 
•  Mixture Models 

•  Algorithms: 
–  K-means 
–  Expectation Maximization (EM) 
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Some Data 
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K-means 

1.  Ask user how many 
clusters they’d like. 

(e.g. k=5)  
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K-means 

1.  Ask user how many 
clusters they’d like. 

(e.g. k=5)  

2.  Randomly guess k 
cluster Center 

locations 
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K-means 

1.  Ask user how many 
clusters they’d like. 

(e.g. k=5)  

2.  Randomly guess k 
cluster Center 

locations 

3.  Each datapoint finds 
out which Center it’s 

closest to. (Thus 
each Center “owns” 
a set of datapoints) 
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K-means 

1.  Ask user how many 
clusters they’d like. 

(e.g. k=5)  

2.  Randomly guess k 
cluster Center 

locations 

3.  Each datapoint finds 
out which Center it’s 

closest to. 

4.  Each Center finds 
the centroid of the 

points it owns 
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K-means 

1.  Ask user how many 
clusters they’d like. 

(e.g. k=5)  

2.  Randomly guess k 
cluster Center 

locations 

3.  Each datapoint finds 
out which Center it’s 

closest to. 

4.  Each Center finds 
the centroid of the 

points it owns… 

5.  …and jumps there 

6.  …Repeat until 
terminated! 12 (C) Dhruv Batra  Slide Credit: Carlos Guestrin 



K-means 
•  Randomly initialize k centers 

–   µ(0) = µ1
(0),…, µk

(0) 

•  Assign:  
–  Assign each point i∈{1,…n} to nearest center: 
–    

•  Recenter:  
–  µj becomes centroid of its points 
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C(i) ⇥� argmin
j

||xi � µj ||2



K-means 
•  Demo 

–  http://www.kovan.ceng.metu.edu.tr/~maya/kmeans/ 
–  http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/

AppletKM.html 
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What is K-means optimizing?  
•  Objective F(µ,C): function of centers µ and point 

allocations C: 

–    

–  1-of-k encoding 

•  Optimal K-means: 
–  minµmina F(µ,a)  
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F (µ, C) =
NX

i=1

||xi � µC(i)||2

F (µ,a) =
NX

i=1

kX

j=1

aij ||xi � µj ||2



Coordinate descent algorithms 
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•  Want: mina minb F(a,b) 

•  Coordinate descent: 
–  fix a, minimize b 
–  fix b, minimize a 
–  repeat 

•  Converges!!! 
–  if F is bounded 
–  to a (often good) local optimum  

•  as we saw in applet (play with it!) 

•  K-means is a coordinate descent algorithm! 



•  Optimize objective function: 

•  Fix µ, optimize a (or C) 
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K-means as Co-ordinate Descent 

min
µ1,...,µk

min
a1,...,aN

F (µ,a) = min
µ1,...,µk

min
a1,...,aN

NX

i=1

kX

j=1

aij ||xi � µj ||2



•  Optimize objective function: 

•  Fix a (or C), optimize µ	
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K-means as Co-ordinate Descent 

min
µ1,...,µk

min
a1,...,aN

F (µ,a) = min
µ1,...,µk

min
a1,...,aN

NX

i=1

kX

j=1

aij ||xi � µj ||2



One important use of K-means 
•  Bag-of-word models in computer vision 
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Bag of Words model 

aardvark  0 

about  2 

all  2 

Africa  1 

apple  0 

anxious  0 

... 

gas  1 

... 

oil  1 

… 

Zaire  0 
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Object Bag of ‘words’ 

Fei-­‐Fei	
  Li	
  



Fei-­‐Fei	
  Li	
  



Interest Point Features 

Normalize 
patch 

Detect patches 
[Mikojaczyk and Schmid ’02] 

[Matas et al. ’02]  

[Sivic et al. ’03] 

Compute 
SIFT 

descriptor 
      [Lowe’99] 
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… 

Patch Features 

Slide credit: Josef Sivic 



dictionary formation 

… 

Slide credit: Josef Sivic 



Clustering (usually k-means) 

Vector quantization 

… 

Slide credit: Josef Sivic 



Clustered Image Patches 

Fei-Fei et al. 2005 



Visual Polysemy. Single visual word occurring on different  (but locally 
similar) parts on different object categories. 

Visual Synonyms. Two different visual words representing a similar part of 
an object  (wheel of a motorbike). 

Visual synonyms and polysemy 

Andrew	
  Zisserman	
  



Image representation 

….. 

fre
qu

en
cy

 

codewords 

Fei-­‐Fei	
  Li	
  



(One) bad case for k-means 

•  Clusters may overlap 
•  Some clusters may be 

“wider” than others 

•  GMM to the rescue! 
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GMM 
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Recall Multi-variate Gaussians 
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GMM 
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Hidden Data Causes Problems #1 
•  Fully Observed (Log) Likelihood factorizes 

•  Marginal (Log) Likelihood doesn’t factorize 

•  All parameters coupled!  
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GMM vs Gaussian Joint Bayes Classifier 
•  On Board 

–  Observed Y vs Unobserved Z 
–  Likelihood vs Marginal Likelihood 
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Hidden Data Causes Problems #2 
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Hidden Data Causes Problems #2 
•  Identifiability 
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Hidden Data Causes Problems #3 
•  Likelihood has singularities if one Gaussian 

“collapses” 
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Special case: spherical Gaussians 
and hard assignments 
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•  If P(X|Z=k) is spherical, with same σ for all classes: 

•  If each xi belongs to one class C(i) (hard 
assignment), marginal likelihood: 

•  M(M)LE same as K-means!!! 

P(xi, y = j)
j=1

k

∑
i=1

N

∏ ∝ exp − 1
2σ 2 xi −µC(i)

2%

&'
(

)*i=1

N

∏

P(xi | z = j)∝ exp −
1
2σ 2 xi −µ j

2#

$%
&

'(



The K-means GMM assumption 

•  There are k components 

•  Component i has an associated 
mean vector µι	



µ1	



µ2	



µ3	
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The K-means GMM assumption 

•  There are k components 

•  Component i has an associated 
mean vector µι	



•  Each component generates data 
from a Gaussian with mean mi and 

covariance matrix σ2Ι  	



Each data point is generated 
according to the following recipe:  

µ1	



µ2	



µ3	
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The K-means GMM assumption 

•   There are k components 

•   Component i has an associated 
mean vector µι	



•   Each component generates 
data from a Gaussian with 

mean mi and covariance matrix 
σ2Ι  	



Each data point is generated 
according to the following 

recipe:  

1.  Pick a component at random: 
Choose component i with 

probability P(y=i) 

µ2	
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The K-means GMM assumption 
 

•    There are k components 

•   Component i has an associated 
mean vector µι	



•   Each component generates 
data from a Gaussian with 

mean mi and covariance matrix 
σ2Ι  	



Each data point is generated 
according to the following 

recipe:  

1.  Pick a component at random: 
Choose component i with 

probability P(y=i) 

2.  Datapoint ∼ Ν(µι, σ2Ι )	



µ2	



x 
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The General GMM assumption 

µ1	



µ2	



µ3	



•  There are k components 

•   Component i has an associated 
mean vector mi 

•   Each component generates 
data from a Gaussian with 

mean mi and covariance matrix 
Σi 

Each data point is generated 
according to the following 

recipe:  

1.  Pick a component at random: 
Choose component i with 

probability P(y=i) 

2.  Datapoint ~ N(mi, Σi ) 
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K-means vs GMM 
•  K-Means 

–  http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/
AppletKM.html 

•  GMM 
–  http://www.socr.ucla.edu/applets.dir/mixtureem.html 

(C) Dhruv Batra  45 


