ECE 5984: Introduction to Machine Learning

Topics:

- Unsupervised Learning: Kmeans, GMM, EM

Readings: Barber 20.1-20.3

Dhruv Batra
Virginia Tech

Midsem Presentations Graded

- Mean $8 / 10=80 \%$
- Min: 3
- Max: 10

Score

Tasks

Supervised Learning

Unsupervised Learning

(C) Dhruv Batra

Unsupervised Learning

- Learning only with X
- Y not present in training data
- Some example unsupervised learning problems:
- Clustering / Factor Analysis
- Dimensionality Reduction / Embeddings
- Density Estimation with Mixture Models

New Topic: Clustering

Slide Credit: Carlos Guestrin

Synonyms

- Clustering
- Vector Quantization
- Latent Variable Models
- Hidden Variable Models
- Mixture Models
- Algorithms:
- K-means
- Expectation Maximization (EM)

Some Data

K-means

1. Ask user how many clusters they'd like.
(e.g. $k=5$)

K-means

1. Ask user how many clusters they'd like. (e.g. $k=5$)
2. Randomly guess k cluster Center locations

K-means

1. Ask user how many clusters they'd like.
(e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

K-means

1. Ask user how many clusters they'd like. (e.g. $k=5$)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns

K-means

1. Ask user how many clusters they'd like.
(e.g. $k=5$)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns...
5. ...and jumps there
6. ...Repeat until
(C) Dhruv B Berminated!

K-means

- Randomly initialize k centers
$-\mu^{(0)}=\mu_{1}{ }^{(0)}, \ldots, \mu_{\mathrm{k}}{ }^{(0)}$
- Assign:
- Assign each point $i \in\{1, \ldots \mathrm{n}\}$ to nearest center:
$-C(i) \longleftarrow \underset{j}{\operatorname{argmin}}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{j}\right\|^{2}$
- Recenter:
- μ_{j} becomes centroid of its points

K-means

- Demo
- http://www.kovan.ceng.metu.edu.tr/~maya/kmeans/
- http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/ AppletKM.html

What is K-means optimizing?

- Objective $F(\mu, C)$: function of centers μ and point allocations C :
- $F(\boldsymbol{\mu}, C)=\sum_{i=1}^{N}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{C(i)}\right\|^{2}$
- 1-of-k encoding

$$
F(\boldsymbol{\mu}, \boldsymbol{a})=\sum_{i=1}^{N} \sum_{j=1}^{k} a_{i j}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{j}\right\|^{2}
$$

- Optimal K-means:
$-\min _{\mu} \min _{a} F(\mu, a)$

Coordinate descent algorithms

- Want: $\min _{\mathrm{a}} \min _{\mathrm{b}} \mathrm{F}(\mathrm{a}, \mathrm{b})$
- Coordinate descent:
- fix a, minimize b
- fix b, minimize a
- repeat
- Converges!!!
- if F is bounded
- to a (often good) local optimum
- as we saw in applet (play with it!)
- K-means is a coordinate descent algorithm!

K-means as Co-ordinate Descent

- Optimize objective function:

$$
\min _{\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k}} \min _{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{N}} F(\boldsymbol{\mu}, \boldsymbol{a})=\min _{\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k}} \min _{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{N}} \sum_{i=1}^{N} \sum_{j=1}^{k} a_{i j}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{j}\right\|^{2}
$$

- Fix μ, optimize a (or C)

K-means as Co-ordinate Descent

- Optimize objective function:

$$
\min _{\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k}} \min _{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{N}} F(\boldsymbol{\mu}, \boldsymbol{a})=\min _{\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k}} \min _{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{N}} \sum_{i=1}^{N} \sum_{j=1}^{k} a_{i j}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{j}\right\|^{2}
$$

- Fix a (or C), optimize μ

One important use of K-means

- Bag-of-word models in computer vision

Bag of Words model

[^0]
Object \longrightarrow Bag of 'words'

Fei-Fei Li

Interest Point Features

Patch Features

Slide credit: Josef Sivic

dictionary formation

Slide credit: Josef Sivic

Clustering (usually k-means)

Slide credit: Josef Sivic

Clustered Image Patches

Fei-Fei et al. 2005

Visual synonyms and polysemy

Visual Polysemy. Single visual word occurring on different (but locally similar) parts on different object categories.

Visual Synonyms. Two different visual words representing a similar part of an object (wheel of a motorbike).

Image representation

Fei-Fei Li

(One) bad case for k-means

- Clusters may overlap
- Some clusters may be "wider" than others
- GMM to the rescue!

GMM

(C) Dhruv Batra

Figure Credit: Kevin Murphy

Recall Multi-variate Gaussians

GMM

Hidden Data Causes Problems \#1

- Fully Observed (Log) Likelihood factorizes
- Marginal (Log) Likelihood doesn't factorize
- All parameters coupled!

GMM vs Gaussian Joint Bayes Classifier

- On Board
- Observed Y vs Unobserved Z
- Likelihood vs Marginal Likelihood

Hidden Data Causes Problems \#2

Hidden Data Causes Problems \#2

- Identifiability

Hidden Data Causes Problems \#3

- Likelihood has singularities if one Gaussian "collapses"

Special case: spherical Gaussians and hard assignments

- If $P(X \mid Z=k)$ is spherical, with same σ for all classes:

$$
P\left(\mathbf{x}_{i} \mid z=j\right) \propto \exp \left[-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{i}-\mu_{j}\right\|^{2}\right]
$$

- If each x_{i} belongs to one class $C(i)$ (hard assignment), marginal likelihood:

$$
\prod_{i=1}^{N} \sum_{j=1}^{k} P\left(\mathbf{x}_{i}, y=j\right) \propto \prod_{i=1}^{N} \exp \left[-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{i}-\mu_{C(i)}\right\|^{2}\right]
$$

- M(M)LE same as K-means!!!

The K-means GMM assumption

- There are k components
- Component i has an associated mean vector μ_{ι}

The K-means GMM assumption

- There are k components
- Component i has an associated mean vector μ_{ι}
- Each component generates data from a Gaussian with mean m_{i} and covariance matrix $\sigma^{2} I$

Each data point is generated according to the following recipe:

The K-means GMM assumption

- There are k components
- Component i has an associated mean vector μ_{t}
- Each component generates data from a Gaussian with mean m_{i} and covariance matrix $\sigma^{2} I$

Each data point is generated according to the following recipe:

1. Pick a component at random: Choose component i with probability $P(y=i)$

The K-means GMM assumption

- There are k components
- Component i has an associated mean vector μ_{\imath}
- Each component generates data from a Gaussian with mean m_{i} and covariance matrix $\sigma^{2} I$

Each data point is generated according to the following recipe:

1. Pick a component at random: Choose component i with probability $P(y=i)$
2. Datapoint $\sim \mathrm{N}\left(\mu_{v}, \sigma^{2} I\right)$

The General GMM assumption

- There are k components
- Component i has an associated mean vector m_{i}
- Each component generates data from a Gaussian with mean m_{i} and covariance matrix Σ_{i}

Each data point is generated according to the following recipe:

1. Pick a component at random: Choose component i with probability $P(y=i)$
2. Datapoint $\sim \mathrm{N}\left(m_{i}, \Sigma_{i}\right)$

K-means vs GMM

- K-Means
- http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/ AppletKM.html
- GMM
- http://www.socr.ucla.edu/applets.dir/mixtureem.html

[^0]: (C) Dhruv Batra

