ECE 5984: Introduction to
Machine Learning

Topics:
— Unsupervised Learning: Kmeans, GMM, EM

Readings: Barber 20.1-20.3

Dhruv Batra
Virginia Tech
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Tasks

Supervised Learning
X > Classification >y Discrete

V

X > Regression >y Continuous

V

Unsupervised Learning

X > Clustering > C Discrete ID

V

X DImenSIO.na“ty — z Continuous
Reduction
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Unsupervised Learning

* Learning only with X
— Y not present in training data

« Some example unsupervised learning problems:
— Clustering / Factor Analysis
— Dimensionality Reduction / Embeddings
— Density Estimation with Mixture Models
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New Topic: Clustering
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Synonyms

» Clustering

* Vector Quantization
 |Latent Variable Models
 Hidden Variable Models

 Mixture Models

« Algorithms:
— K-means
— Expectation Maximization (EM)
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ome Data
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K-means

1.  Ask user how many
clusters they'd like.
(e.g. k=5)
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K-means

1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations
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K-means

1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it’s
closest to.

4. Each Center finds
the centroid of the
points it owns
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K-means

 Randomly initialize k centers
- w0 =p0, w0

* Assign:
— Assign each point i€{1,...n} to nearest center:

~ C(i) «— argmin ||x; — ]2
J

* Recenter:
- w becomes centroid of its points
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K-means

« Demo
— http://www.kovan.ceng.metu.edu.tr/~maya/kmeans/

— http://home.deib.polimi.it/matteucc/Clustering/tutorial html/
AppletKM.html
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What is K-means optimizing”?

* Obijective F(u,C): function of centers n and point
allocations C

— F(p,C) = ZHXz 1ol

— 1-of-k encoding Zzamllxz i I”

=1 j5=1

* Optimal K-means:
— min,min, F(u,a)
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Coordinate descent algorithms

Want: min, min, F(a,b)

Coordinate descent:
— fix a, minimize b
— fix b, minimize a
— repeat

Converges!!!
— if F is bounded

— to a (often good) local optimum
« as we saw in applet (play with it!)

K-means is a coordinate descent algorithm!
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K-means as Co-ordinate Descent

* Optimize objective function:

min  min F(u,a)= min  min ZZCLMH}Q — p)?

Hi,..-, Hi Ai,..., anN Hi,..., HE Ai,..., anN “

* Fix n, optimize a (or C)
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]
K-means as Co-ordinate Descent

* Optimize objective function:

min  min F(u,a)= min  min ZZCLMH}Q — p)?

Hi,..-, Hi Ai,..., anN Hi,..., HE Ai,..., anN “

« Fix a (or C), optimize n
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One important use of K-means

« Bag-of-word models in computer vision
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Bag of Words model

P All About The Company

TOTAL Global Activities aardvark

0
Corporate Structure
TOTAL's Story ab Out 2
Upstream Strategy
Downstream Strategy 2

Chemicals Strategy all
TOTAL Foundation
Homepags »| Africa |

all about the apple 0
company

anxious O

Our energy exploration, production, and distribution
operations span the globe, with activities in more than 100
countries.

At TOTAL, we draw our greatest strength from our gas 1
fast-growing o1l and gas reserves. Our strategic emphasis
on natural gas provides a strong position in a rapidly
expanding market.

N . o oil 1
Our expanding refining and marketing operations in Asia
and the Mediterranean Rim complement already solid
posttions in Europe, Aftica, and the U5

Our growing specialty chemicals sector adds balance and y4 aire 0
profit to the core energy business.
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Object » Bag of ‘words’

Fei-Fei Li






Interest Point Features

SIFT Normalize
descriptor patch
[Lowe’99]

Detect patches
[Mikojaczyk and Schmid '02]
[Matas et al. '02]

[Sivic et al. '03]
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Patch Features
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dictionary formation
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Clustering (usually k-means)
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Clustered Image Patches
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Visual synonyms and polysemy

Hel e = HEEE
aaaE (e

Visual Polysemy. Single visual word occurring on different (but locally
similar) parts on different object categories.

Visual Synonyms. Two different visual words representing a similar part of
an object (wheel of a motorbike).

Andrew Zisserman
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(One) bad case for k-means

« Clusters may overlap

* Some clusters may be
“‘wider” than others

° « GMM to the rescue!
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Recall Multi-variate Gaussians
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GMM
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Hidden Data Causes Problems #1

* Fully Observed (Log) Likelihood factorizes
« Marginal (Log) Likelihood doesn't factorize

« All parameters coupled!
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GMM vs Gaussian Joint Bayes Classifier

* On Board

— Observed Y vs Unobserved Z
— Likelihood vs Marginal Likelihood
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Hidden Data Causes Problems #2
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Hidden Data Causes Problems #2

* |dentifiability

35
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Hidden Data Causes Problems #3

 Likelihood has singularities if one Gaussian
“collapses”

(C) Dhruv Batra X 38



-
Special case: spherical Gaussians

and hard assignments

 If P(X|Z=k) is spherical, with same o for all classes:

P(x;lz=j)x GXP[— 2(172 HX - Msz]

* |f each x; belongs to one class C(i) (hard
assignment), marginal likelihood:

« M(M)LE same as K-means!!!
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The K-means GMM assumption

« There are k components
« Component i has an associated
mean vector
w, s

o Ui

e I
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The K-means GMM assumption

* There are kK components
« Component j has an associated
mean vector u,
* Each component generates data \
from a Gaussian with mean m;and
covariance matrix oI

Each data point is generated
according to the following recipe:

(C) Dhruv Batra Slide Credit: Carlos Guestrin
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The K-means GMM assumption

«  There are k components

«  Component j has an associated
mean vector u,

. Each component generates
data from a Gaussian with
mean m;and covariance matrix
o |

Each data point is generated
according to the following
recipe:

1. Pick a component at random:
Choose component i with
probability P(y=i)
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The K-means GMM assumption

. There are k components

«  Component j has an associated
mean vector u,

. Each component generates
data from a Gaussian with
mean m;and covariance matrix
o |

Each data point is generated
according to the following
recipe:

1. Pick a component at random:
Choose component i with
probability P(y=i)

2. Datapoint ~ N(u, o°I)
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The General GMM assumption

 There are k components

«  Component j has an associated
mean vector m,

. Each component generates
data from a Gaussian with
mean m;and covariance matri

>

1

Each data point is generated
according to the following
recipe:

1. Pick a component at random:
Choose component i with
probability P(y=i)

2. Datapoint ~ N(m;, %)
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K-means vs GMM

« K-Means

— http://home.deib.polimi.it/matteucc/Clustering/tutorial _html/
AppletKM.html

- GMM

— http://www.socr.ucla.edu/applets.dir/mixtureem.html
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