ECE 5984: Introduction to Machine Learning

Topics:

- Decision/Classification Trees
- Ensemble Methods: Bagging, Boosting

Readings: Murphy 16.1-16.2; Hastie 9.2; Murphy 16.4

Dhruv Batra Virginia Tech

Administrativia

- HW3
 - Due: April 14, 11:55pm
 - You will implement primal & dual SVMs
 - Kaggle competition: Higgs Boson Signal vs Background classification
 - <u>https://inclass.kaggle.com/c/2015-Spring-vt-ece-machine-learning-hw3</u>
 - <u>https://www.kaggle.com/c/higgs-boson</u>

Administrativia

- Project Mid-Sem Spotlight Presentations
 - 9 remaining
 - Resume in class on April 20th
 - Format
 - 5 slides (recommended)
 - 4 minute time (STRICT) + 1-2 min Q&A
 - Content
 - Tell the class what you're working on
 - Any results yet?
 - Problems faced?
 - Upload slides on Scholar

Decision Trees

(C) Dhruv Batra

Pose Estimation

- Random Forests!
 - Multiple decision trees
 - <u>http://youtu.be/HNkbG3KsY84</u>

Learning Decision Trees

Decision trees provide a very popular and efficient hypothesis space.

- Variable Size. Any boolean function can be represented.
- Deterministic.
- Discrete and Continuous Parameters.

A small dataset: Miles Per Gallon

Suppose we want to predict MPG

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
						751 70	
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

40 Records

From the UCI repository (thanks to Ross Quinlan)

A Decision Stump

Comments

- Not all features/attributes need to appear in the tree.
- A features/attribute X_i may appear in multiple branches.
- On a path, no feature may appear more than once.
 Not true for continuous features. We'll see later.
- Many trees can represent the same concept
- But, not all trees will have the same size!
 e.g., Y = (A^B) v (¬A^C) (A and B) or (not A and C)

Learning decision trees is hard!!!

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse
 - "Iterative Dichotomizer" (ID3)
 - C4.5 (ID3+improvements)

Recursion Step

Recursion Step

Second level of tree

Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia (Similar recursion in the other cases)

Choosing a good attribute

Measuring uncertainty

- Good split if we are more certain about classification after split
 - Deterministic good (all true or all false)
 - Uniform distribution bad

P(Y=F |
$$X_2$$
=F) = P(Y=T | X_2 =F) = 1/2

Entropy

Entropy *H*(*X*) of a random variable *Y*

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

More uncertainty, more entropy!

Information Theory interpretation: H(*Y*) is the expected number of bits needed to encode a randomly drawn value of *Y* (under most efficient code)

Information gain

- Advantage of attribute decrease in uncertainty
 - Entropy of Y before you split
 - Entropy after split
 - Weight by probability of following each branch, i.e., normalized number of records

$$H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$$

- Information gain is difference $IG(X) = H(Y) H(Y \mid X)$
 - (Technically it's mutual information; but in this context also referred to as information gain)

Learning decision trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute
 - Split on $\arg \max_i IG(X_i) = \arg \max_i H(Y) H(Y \mid X_i)$
- Recurse

Suppose we want to predict MPG

Look at all the information gains...

When do we stop?

Base Cases

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

Base Cases: An idea

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

•Is this a good idea?

The problem with Base Case 3

y = a XOR b

The information gains:

The resulting decision tree:

If we omit Base Case 3:

y = a XOR b

The resulting decision tree:

Remember: Error Decomposition

Basic Decision Tree Building Summarized

BuildTree(*DataSet*, *Output*)

- If all output values are the same in *DataSet*, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute *X* with highest Info Gain
- Suppose X has n_X distinct values (i.e. X has arity n_X).
 - Create and return a non-leaf node with n_X children.
 - The *i*^{*i*}th child should be built by calling

BuildTree(*DS_i*, *Output*)

Where DS_i built consists of all those records in DataSet for which X = *i*th distinct value of X.

Decision trees will overfit

- Standard decision trees have no prior
 - Training set error is always zero!
 - (If there is no label noise)
 - Lots of variance
 - Will definitely overfit!!!
 - Must bias towards simpler trees
- Many strategies for picking simpler trees:
 - Fixed depth
 - Fixed number of leaves
 - Or something smarter... (chi2 tests)

Decision trees will overfit

Avoiding Overfitting

How can we avoid overfitting?

- Stop growing when data split not statistically significant
- Grow full tree, then post-prune

How to select "best" tree:

- Measure performance over training data
- Measure performance over separate validation data set
- Add complexity penalty to performance measure

Reduced-Error Pruning

Split data into *training* and *validation* set

Do until further pruning is harmful:

- 1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- 2. Greedily remove the one that most improves *validation* set accuracy

Pruning Decision Trees

- Demo
 - <u>http://webdocs.cs.ualberta.ca/~aixplore/learning/</u>
 <u>DecisionTrees/Applet/DecisionTreeApplet.html</u>

Effect of Reduced-Error Pruning

Slide Credit: Pedro Domingos, Tom Mitchel, Tom Dietterich

Rule Post-Pruning

- 1. Convert tree to equivalent set of rules
- 2. Prune each rule independently of others
- 3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)

Converting A Tree to Rules

Slide Credit: Pedro Domingos, Tom Mitchel, Tom Dietterich

IF(Outlook = Sunny) AND (Humidity = High)THENPlayTennis = No

IF(Outlook = Sunny) AND (Humidity = Normal)THENPlayTennis = Yes

. . .

Real-Valued inputs

• What should we do if some of the inputs are real-valued?

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

Infinite number of possible split values!!!

Finite dataset, only finite number of relevant splits!

Idea One: Branch on each possible real value

(C) Dhruv Batra

"One branch for each numeric value" idea:

Hopeless: with such high branching factor will shatter the dataset and overfit

Threshold splits

- Binary tree, split on attribute X
 - One branch: X < t</p>
 - Other branch: X >= t

Choosing threshold split

- Binary tree, split on attribute X
 - One branch: X < t</p>
 - Other branch: X >= t
- Search through possible values of *t*
 - Seems hard!!!
- But only finite number of *t*'s are important
 - Sort data according to X into $\{x_1, \dots, x_n\}$
 - Consider split points of the form $x_i + (x_{i+1} x_i)/2$

A better idea: thresholded splits

- Suppose X is real valued
- Define *IG*(*Y*|*X:t*) as *H*(*Y*) *H*(*Y*|*X:t*)
- Define H(Y|X:t) =
 H(Y|X < t) P(X < t) + H(Y|X >= t) P(X >= t)
 - IG(Y|X:t) is the information gain for predicting Y if all you know is whether X is greater than or less than t
- Then define $IG^*(Y|X) = max_t IG(Y|X:t)$
- For each real-valued attribute, use IG*(Y|X) for assessing its suitability as a split
- Note, may split on an attribute multiple times, with different thresholds

Decision Trees

- Demo
 - <u>http://www.cs.technion.ac.il/~rani/LocBoost/</u>

Regression Trees

What do we do at the leaf?

Examples of leaf (predictor) models

Regression Trees

47

Decision Forests

Learn many trees & Average Outputs Will formally visit this in Bagging lecture

Image Credit: Jamie Shotton

What you need to know about decision trees

- Decision trees are one of the most popular data mining tools
 - Easy to understand
 - Easy to implement
 - Easy to use
 - Computationally cheap (to solve heuristically)
- Information gain to select attributes (ID3, C4.5,...)
- Presented for classification, can be used for regression and density estimation too.
- Decision trees will overfit!!!
 - Zero bias classifier \rightarrow Lots of variance
 - Must use tricks to find "simple trees", e.g.,
 - Fixed depth/Early stopping
 - Pruning
 - Hypothesis testing

(C) Dhruv Batra

New Topic: Ensemble Methods

Bagging

Boosting

Synonyms

- Ensemble Methods
- Learning Mixture of Experts/Committees
- Boosting types
 - AdaBoost
 - L2Boost
 - LogitBoost
 - <Your-Favorite-keyword>Boost

A quick look back

- So far you have learnt
- Regression
 - Least Squares
 - Robust Least Squares
- Classification
 - Linear
 - Naïve Bayes
 - Logistic Regression
 - SVMs
 - Non-linear
 - Decision Trees
 - Neural Networks
 - K-NNs

Recall Bias-Variance Tradeoff

- Demo
 - <u>http://www.princeton.edu/~rkatzwer/PolynomialRegression/</u>

Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
 - More complex class \rightarrow less bias
 - More complex class \rightarrow more variance

(C) Dhruv Batra

Fighting the bias-variance tradeoff

• Simple (a.k.a. weak) learners

- e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
- Good: Low variance, don't usually overfit
- Bad: High bias, can't solve hard learning problems

Sophisticated learners

- Kernel SVMs, Deep Neural Nets, Deep Decision Trees
- Good: Low bias, have the potential to learn with Big Data
- Bad: High variance, difficult to generalize
- Can we make combine these properties
 - In general, No!!
 - But often yes...

Voting (Ensemble Methods)

- Instead of learning a single classifier, learn many classifiers
- **Output class:** (Weighted) vote of each classifier
 - Classifiers that are most "sure" will vote with more conviction
- With sophisticated learners
 - Uncorrelated errors \rightarrow expected error goes down
 - On average, do better than single classifier!
 - Bagging
- With weak learners
 - each one good at different parts of the input space
 - On average, do better than single classifier!
 - Boosting

Bagging

- Bagging = Bootstrap Averaging
 - On board
 - Bootstrap Demo
 - <u>http://wise.cgu.edu/bootstrap/</u>

Decision Forests

Learn many trees & Average Outputs Will formally visit this in Bagging lecture