ECE 5984: Introduction to Machine Learning

Topics:

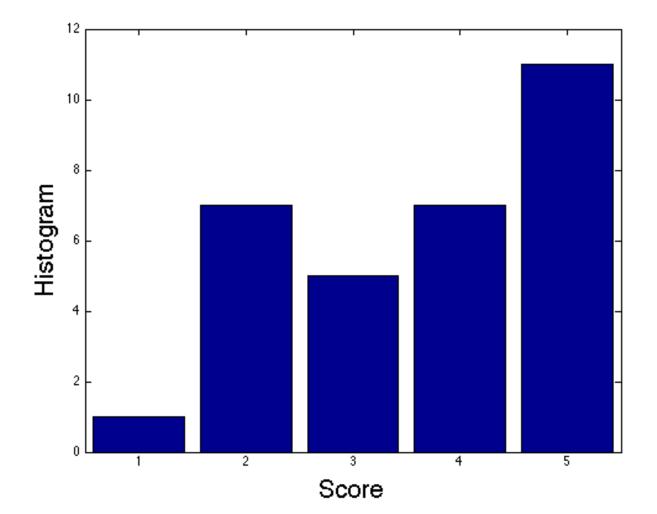
Decision/Classification Trees

Readings: Murphy 16.1-16.2; Hastie 9.2

Dhruv Batra Virginia Tech

Project Proposals Graded

• Mean 3.6/5 = 72%



Administrativia

- Project Mid-Sem Spotlight Presentations
 - Friday: 5-7pm, 3-5pm Whittemore 654 457A
 - 5 slides (recommended)
 - 4 minute time (STRICT) + 1-2 min Q&A
 - Tell the class what you're working on
 - Any results yet?
 - Problems faced?
 - Upload slides on Scholar

Recap of Last Time

Convolution Explained

- <u>http://setosa.io/ev/image-kernels/</u>
- <u>https://github.com/bruckner/deepViz</u>

Fully Connected Layer

- Spatial correlation is local

- Waste of resources + we have not enough

Example: 200x200 image

40K hidden units

~2B parameters!!!

training samples anyway ..

Slide Credit: Marc'Aurelio Ranzato

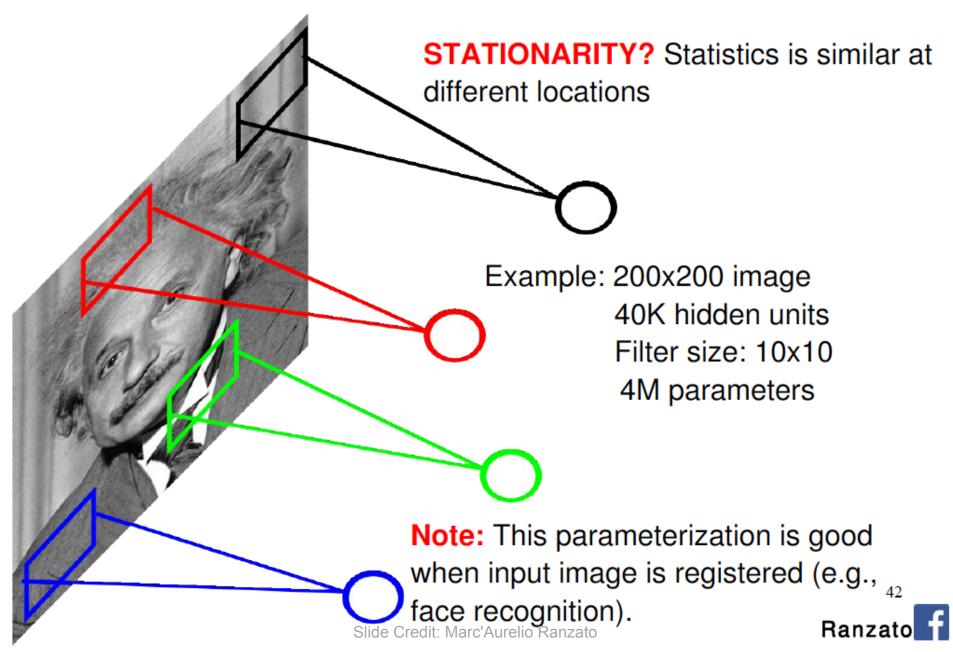
Ranzato

Locally Connected Layer

Example: 200x200 image 40K hidden units Filter size: 10x10 4M parameters

Note: This parameterization is good when input image is registered (e.g., face recognition). Credit: Marc'Aurelio Ranzato

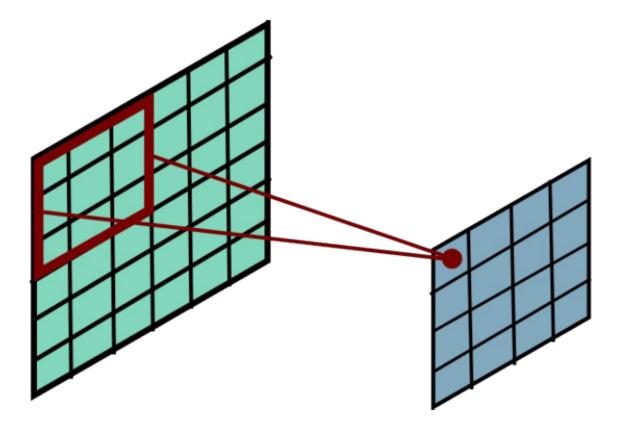
Locally Connected Layer

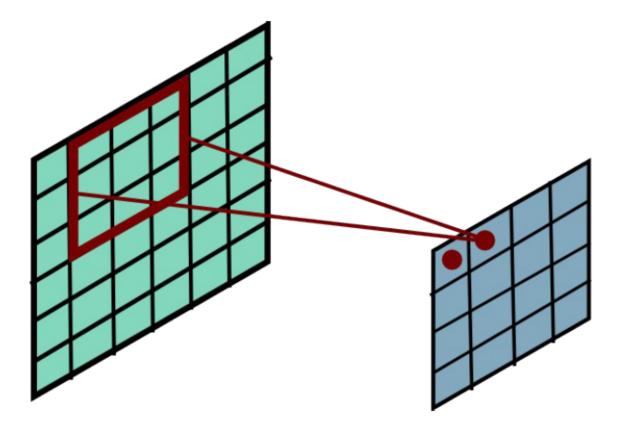


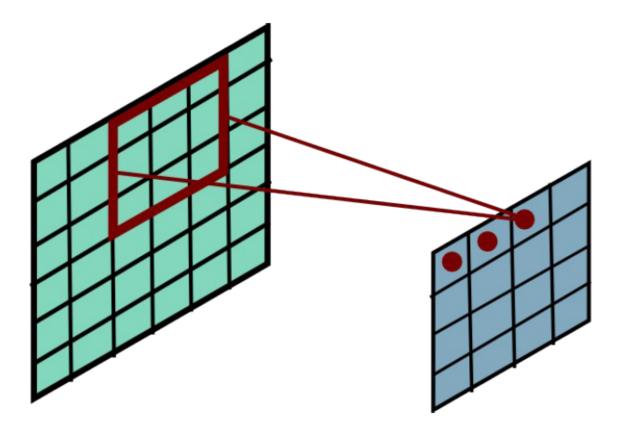
Share the same parameters across different locations (assuming input is stationary):

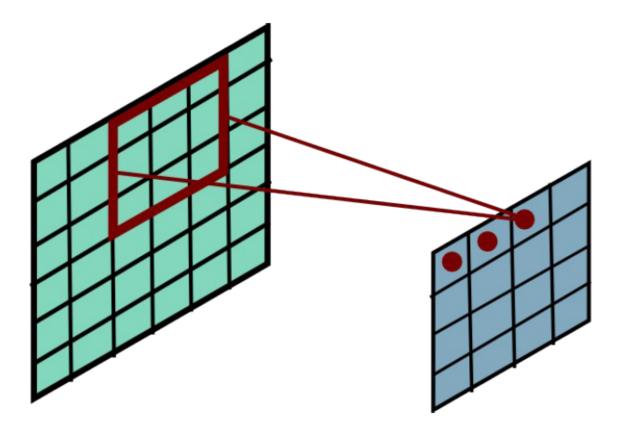
Convolutions with learned kernels

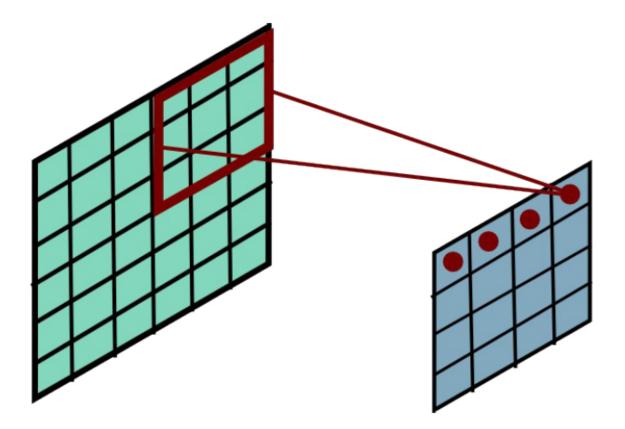
Nide Credit: Marc'Aurelio Ranzato

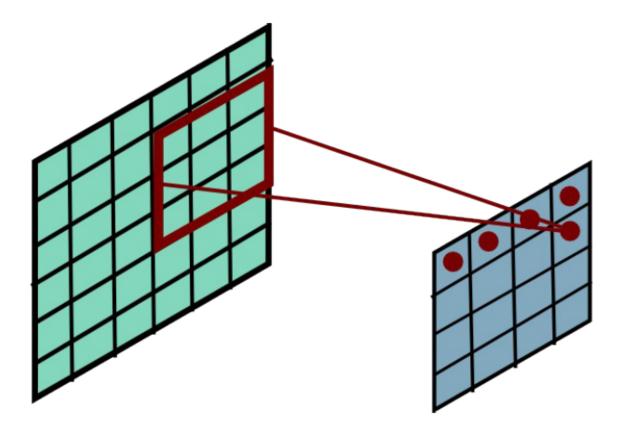


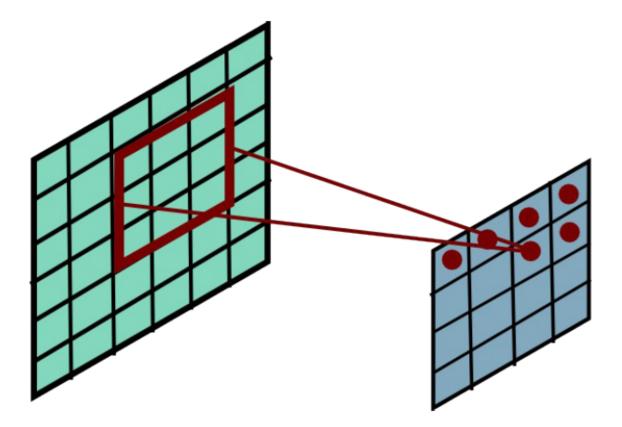


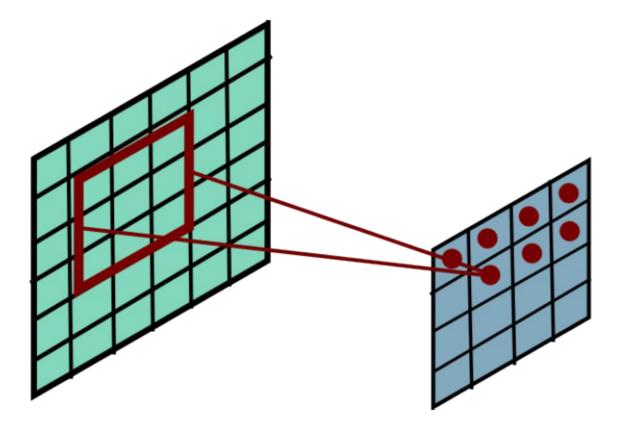


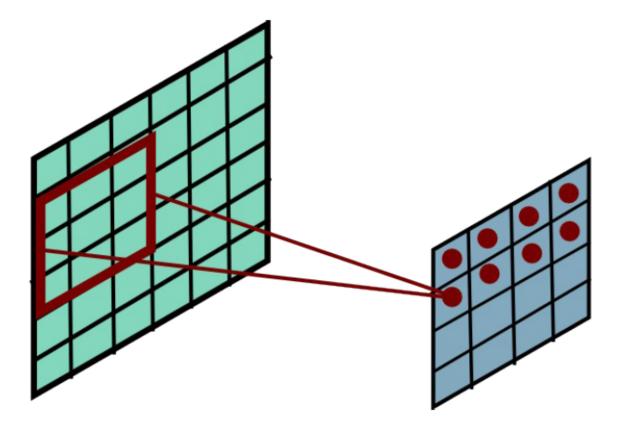


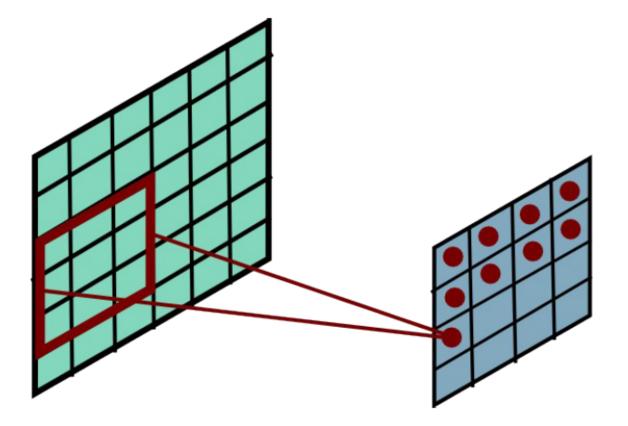


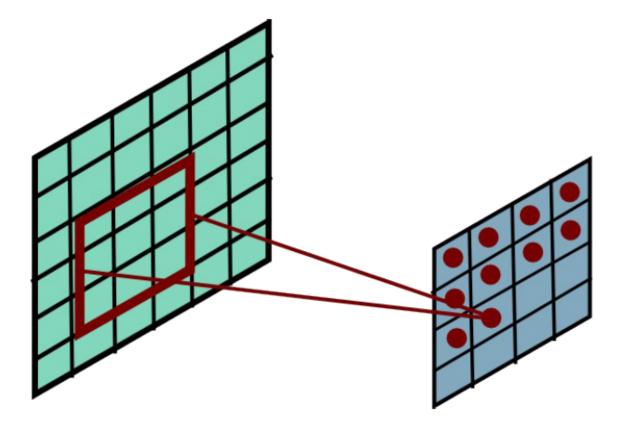


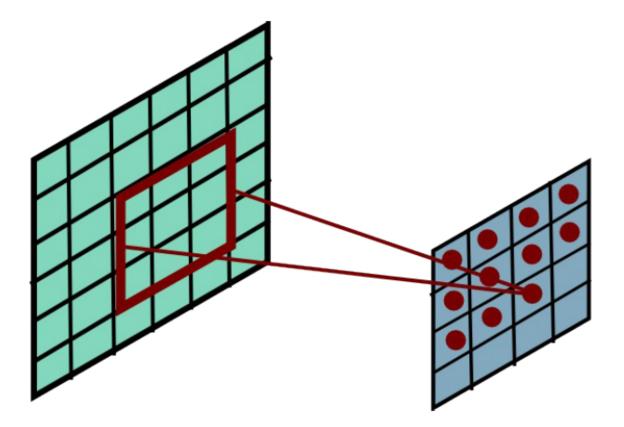


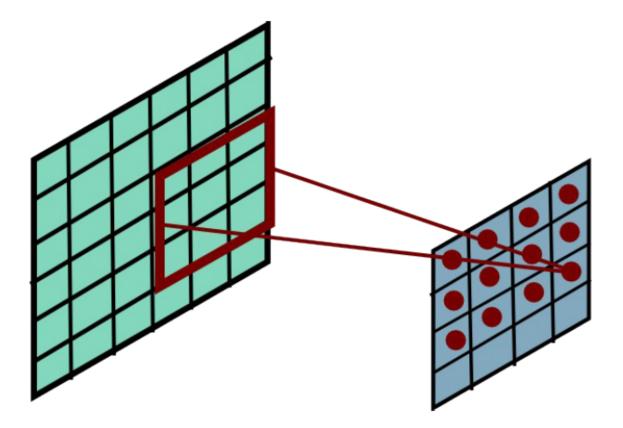


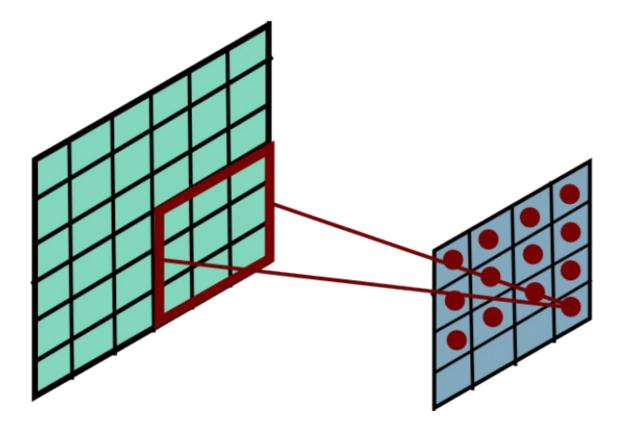


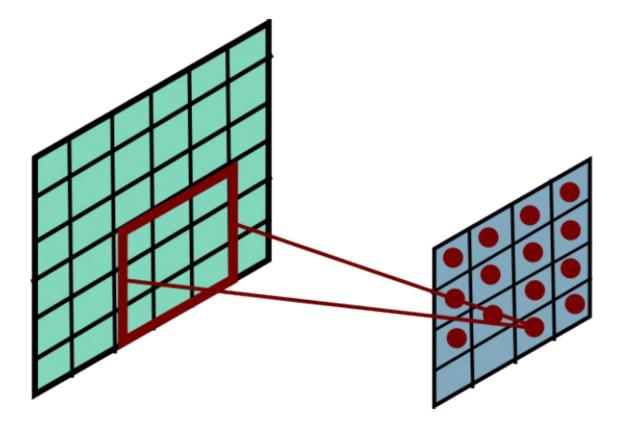


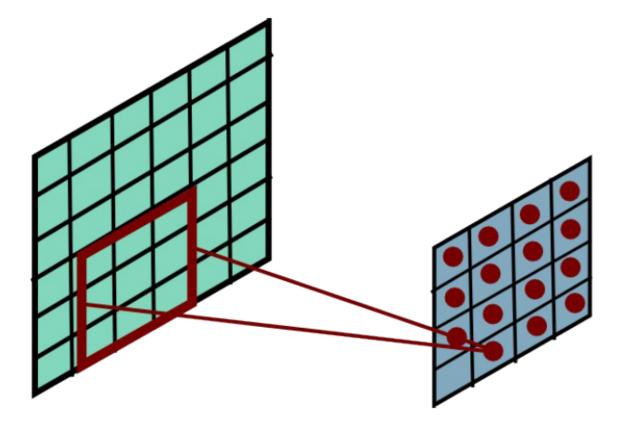


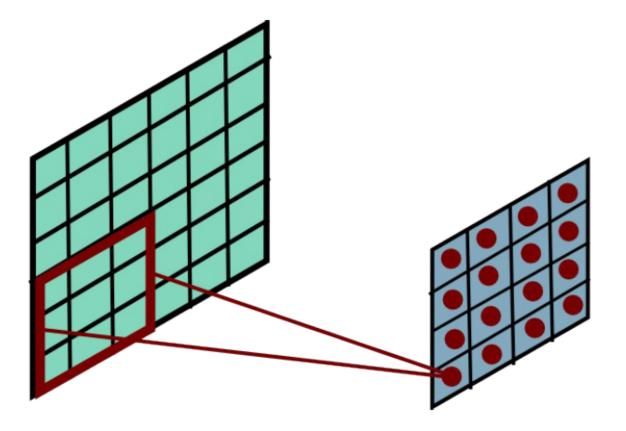


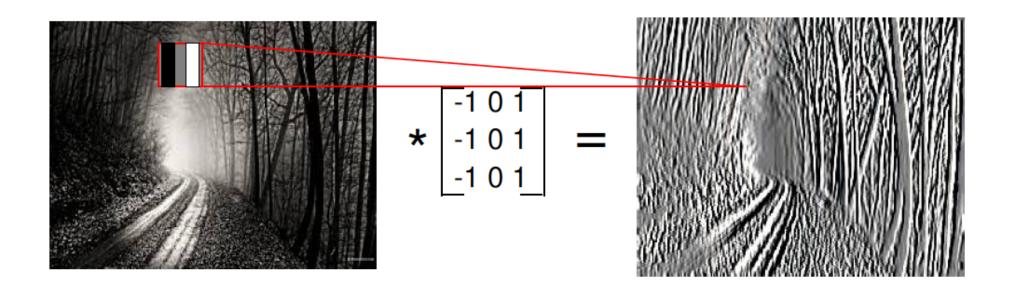


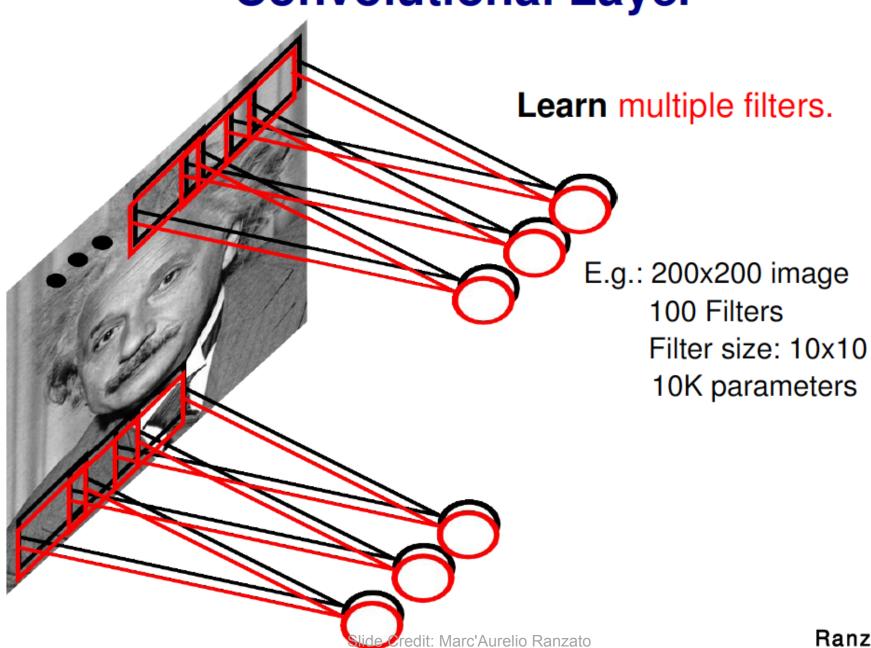












Ranzato

Pooling Layer

Let us assume filter is an "eye" detector.

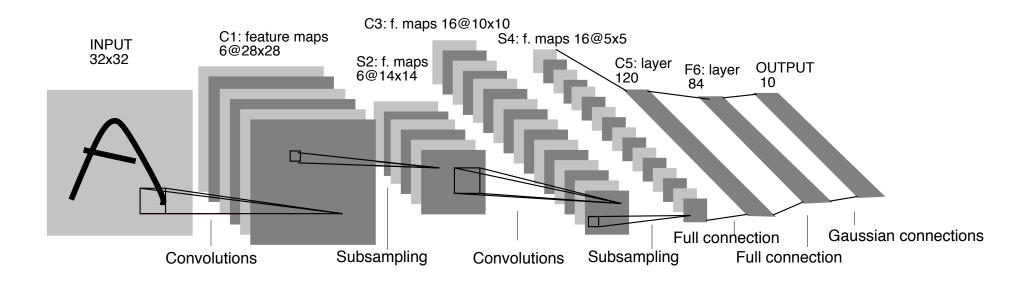
Q.: how can we make the detection robust to the exact location of the eye?

Pooling Layer

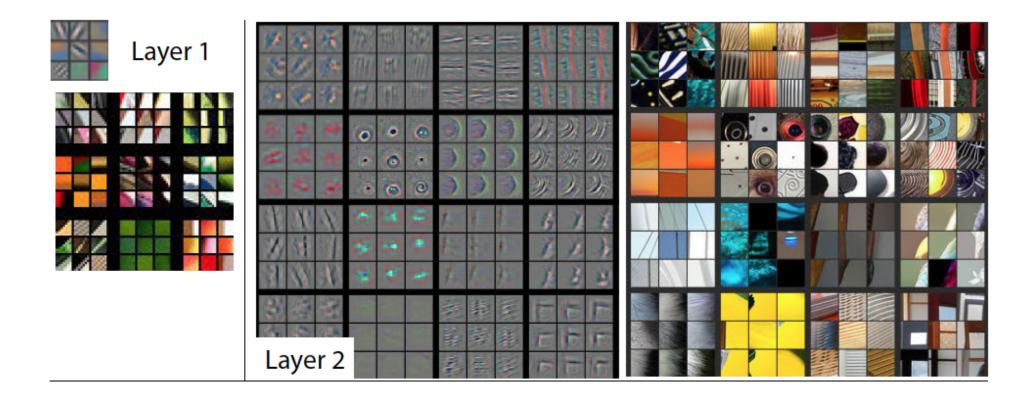
By "pooling" (e.g., taking max) filter responses at different locations we gain robustness to the exact spatial location of features.

Convolutional Nets

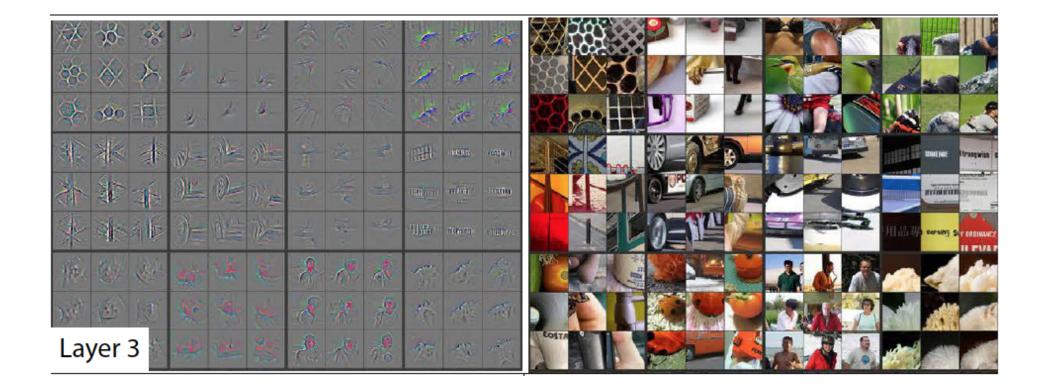
- Example:
 - <u>http://yann.lecun.com/exdb/lenet/index.html</u>



Visualizing Learned Filters



Visualizing Learned Filters



Visualizing Learned Filters



(C) Dhruv Batra

Figure Credit: [Zeiler & Fergus ECCV14]

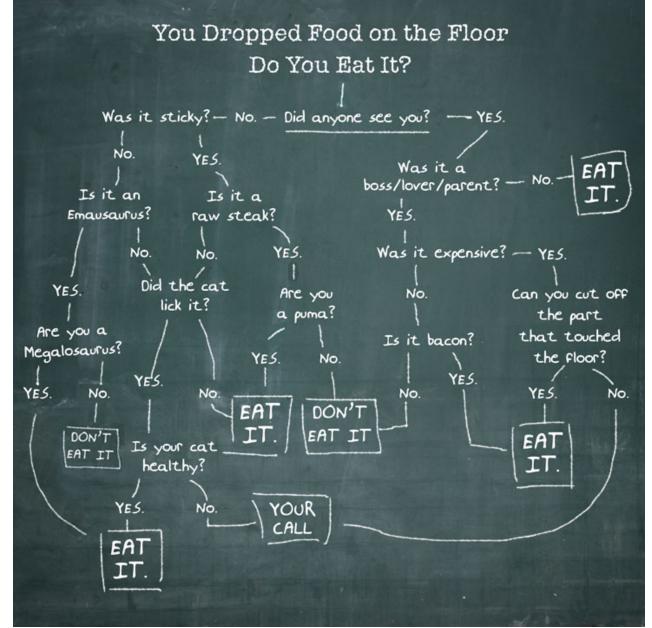
Addressing non-linearly separable data – Option 1, non-linear features

- Choose non-linear features, e.g.,
 - Typical linear features: $w_0 + \sum_i w_i x_i$
 - Example of non-linear features:
 - Degree 2 polynomials, $w_0 + \sum_i w_i x_i + \sum_{ij} w_{ij} x_i x_j$
- Classifier $h_w(\mathbf{x})$ still linear in parameters \mathbf{w}
 - As easy to learn
 - Data is linearly separable in higher dimensional spaces
 - Express via kernels

Addressing non-linearly separable data – Option 2, non-linear classifier

- Choose a classifier h_w(x) that is non-linear in parameters w, e.g.,
 - Decision trees, neural networks, ...
- More general than linear classifiers
- But, can often be harder to learn (non-convex/ concave optimization required)
- Often very useful (outperforms linear classifiers)
- In a way, both ideas are related

New Topic: Decision Trees



(C) Dhruv Batra

Synonyms

- Decision Trees
- Classification and Regression Trees (CART)
- Algorithms for learning decision trees:
 - ID3
 - C4.5
- Random Forests
 - Multiple decision trees

Decision Trees

- Demo
 - <u>http://www.cs.technion.ac.il/~rani/LocBoost/</u>

Pose Estimation

- Random Forests!
 - Multiple decision trees
 - <u>http://youtu.be/HNkbG3KsY84</u>

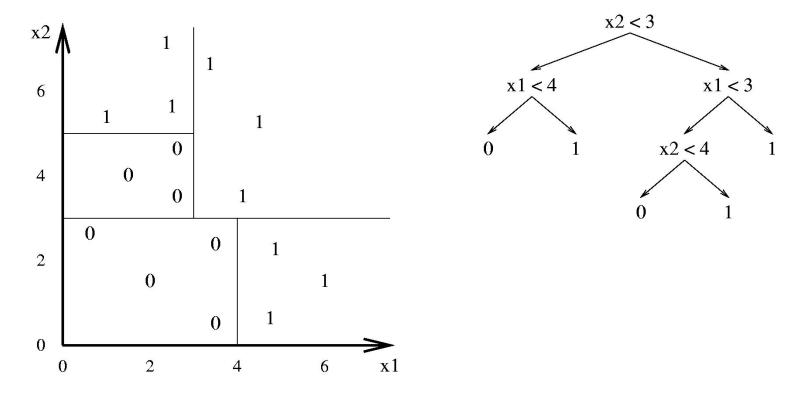
Learning Decision Trees

Decision trees provide a very popular and efficient hypothesis space.

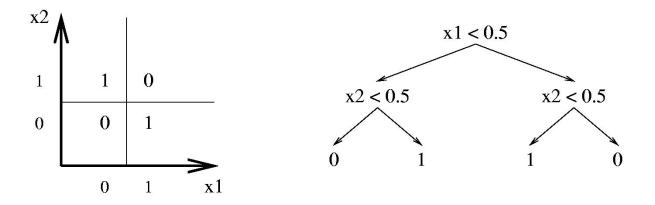
- Variable Size. Any boolean function can be represented.
- Deterministic.
- Discrete and Continuous Parameters.

Decision Tree Decision Boundaries

Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle with one of the K classes.



Decision Trees Can Represent Any Boolean Function



The tree will in the worst case require exponentially many nodes, however.

Decision Trees Provide Variable-Size Hypothesis Space

As the number of nodes (or depth) of tree increases, the hypothesis space grows

- depth 1 ("decision stump") can represent any boolean function of one feature.
- depth 2 Any boolean function of two features; some boolean functions involving three features (e.g., $(x_1 \land x_2) \lor (\neg x_1 \land \neg x_3)$
- etc.

A small dataset: Miles Per Gallon

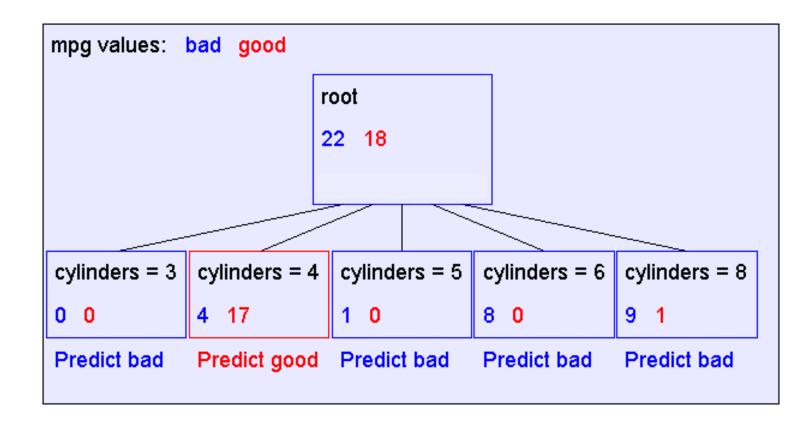
Suppose we want to predict MPG

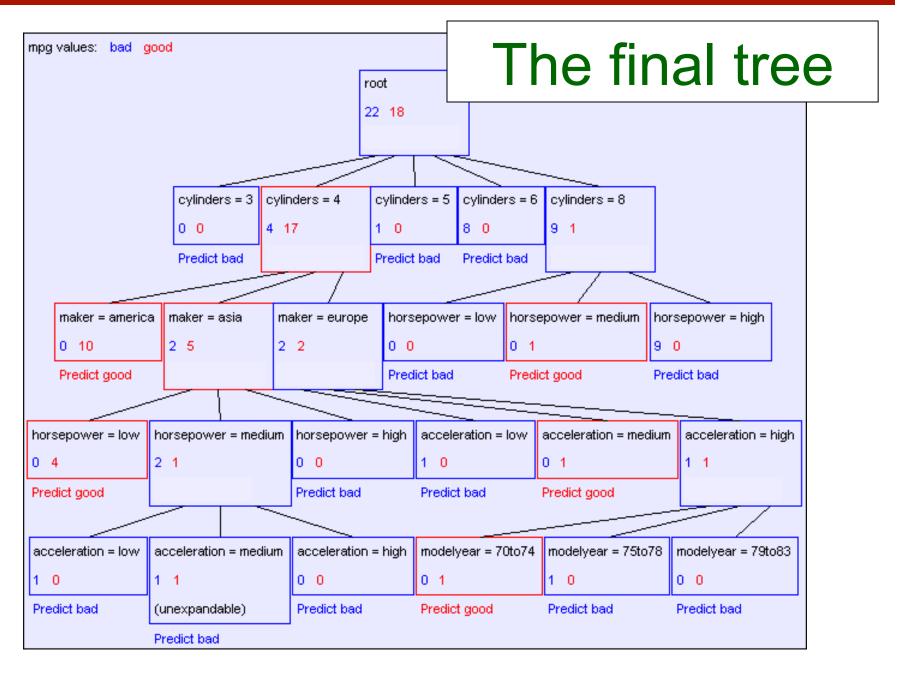
mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
						751 70	
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

40 Records

From the UCI repository (thanks to Ross Quinlan)

A Decision Stump





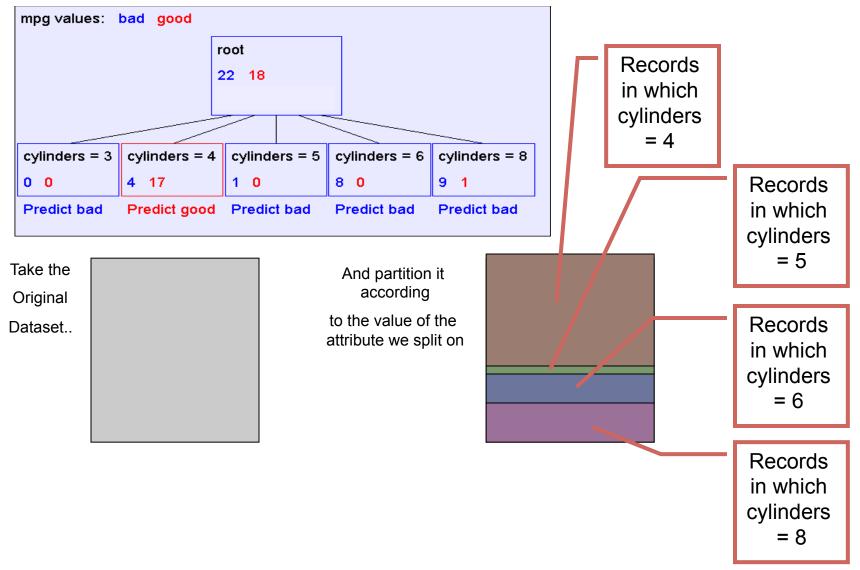
Comments

- Not all features/attributes need to appear in the tree.
- A features/attribute X_i may appear in multiple branches.
- On a path, no feature may appear more than once.
 Not true for continuous features. We'll see later.
- Many trees can represent the same concept
- But, not all trees will have the same size!
 e.g., Y = (A^B) v (¬A^C) (A and B) or (not A and C)

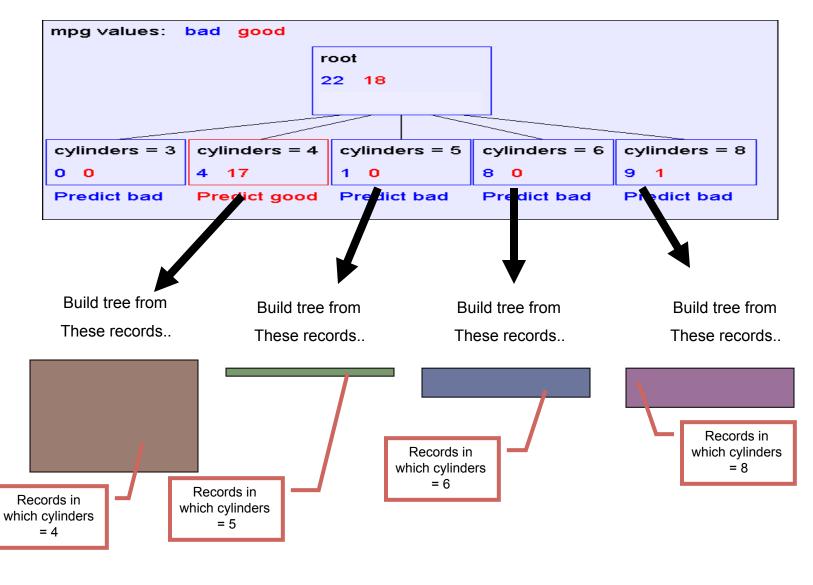
Learning decision trees is hard!!!

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse
 - "Iterative Dichotomizer" (ID3)
 - C4.5 (ID3+improvements)

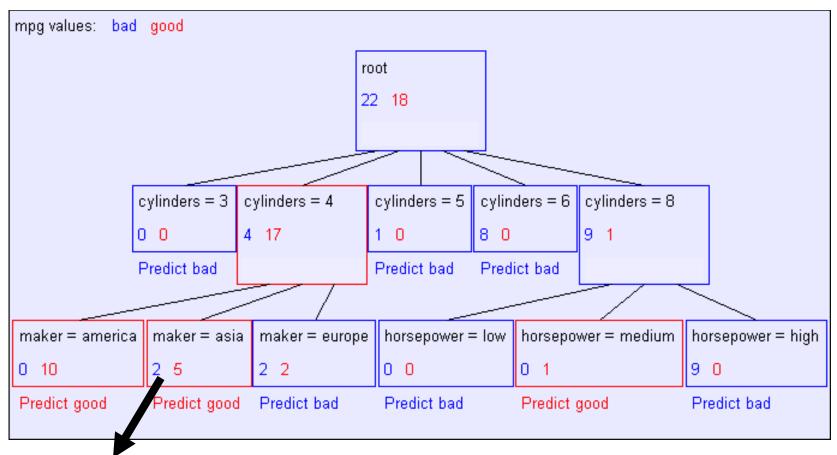
Recursion Step



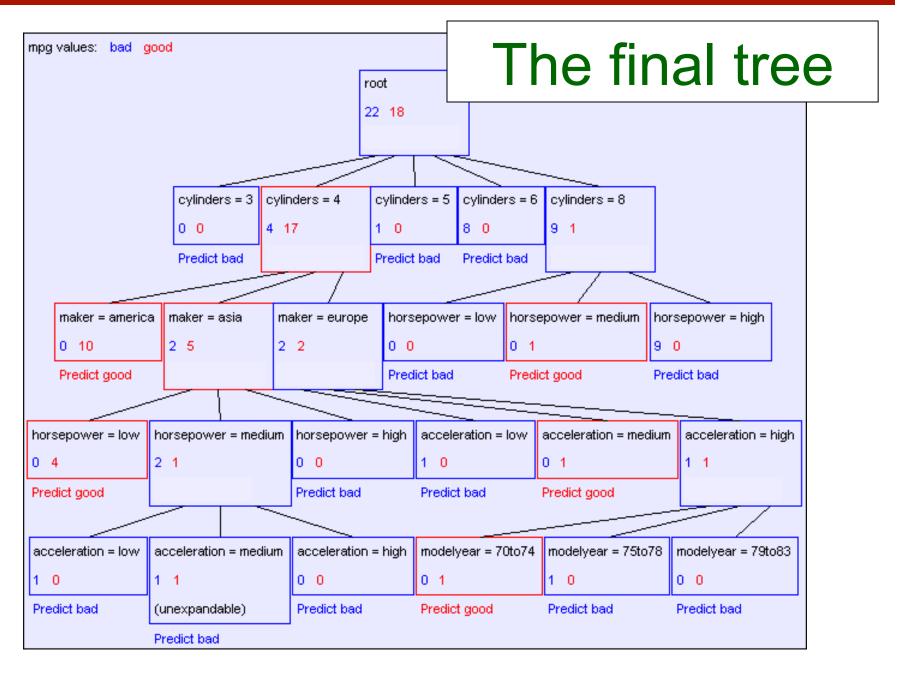
Recursion Step



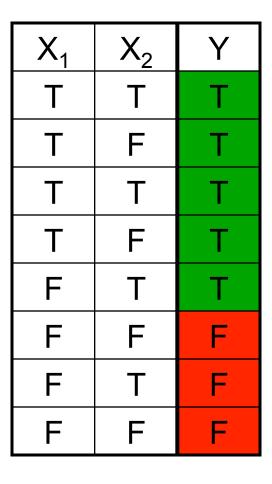
Second level of tree



Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia (Similar recursion in the other cases)

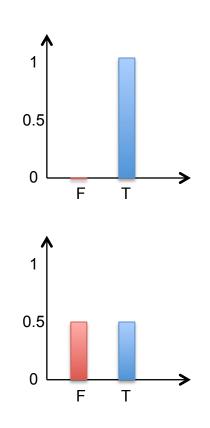


Choosing a good attribute



Measuring uncertainty

- Good split if we are more certain about classification after split
 - Deterministic good (all true or all false)
 - Uniform distribution bad



P(Y=F |
$$X_2$$
=F) = P(Y=T | X_2 =F) = 1/2

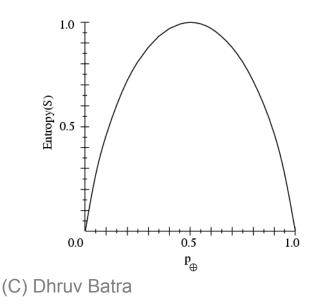
Entropy

Entropy *H*(*X*) of a random variable *Y*

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

More uncertainty, more entropy!

Information Theory interpretation: H(*Y*) is the expected number of bits needed to encode a randomly drawn value of *Y* (under most efficient code)



Information gain

- Advantage of attribute decrease in uncertainty
 - Entropy of Y before you split
 - Entropy after split
 - Weight by probability of following each branch, i.e., normalized number of records

$$H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$$

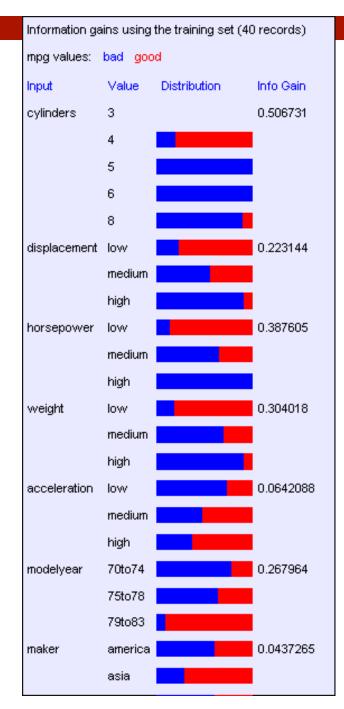
- Information gain is difference $IG(X) = H(Y) H(Y \mid X)$
 - (Technically it's mutual information; but in this context also referred to as information gain)

Learning decision trees

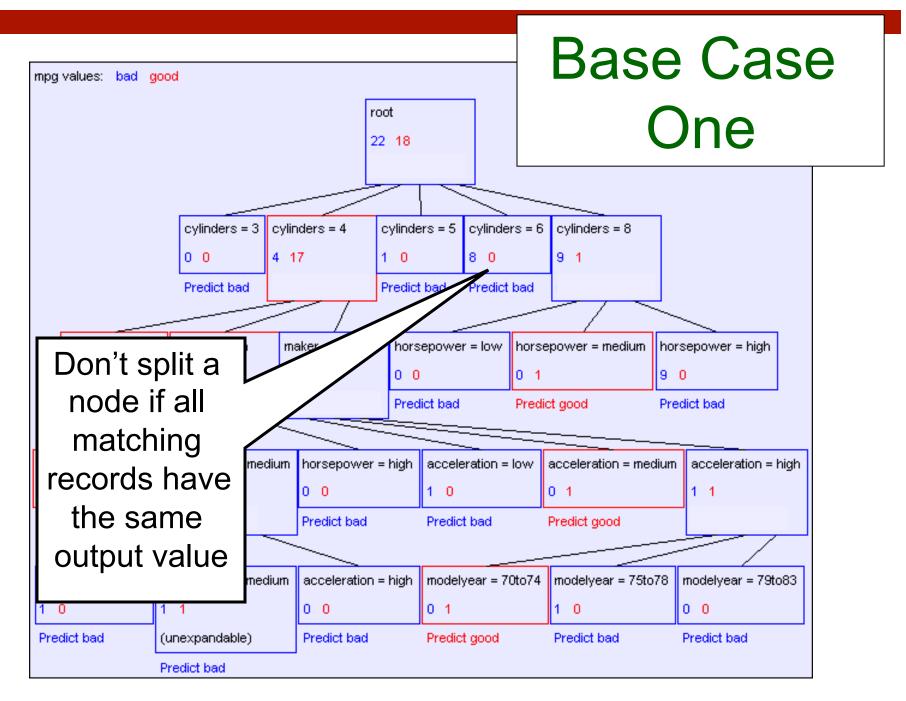
- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute
 - Split on $\arg \max_i IG(X_i) = \arg \max_i H(Y) H(Y \mid X_i)$
- Recurse

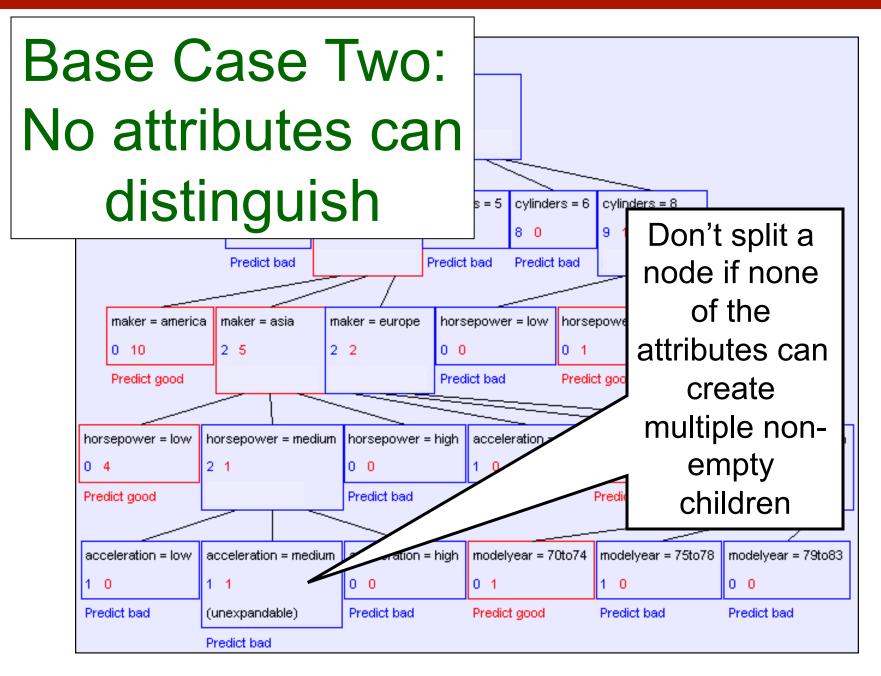
Suppose we want to predict MPG

Look at all the information gains...



When do we stop?



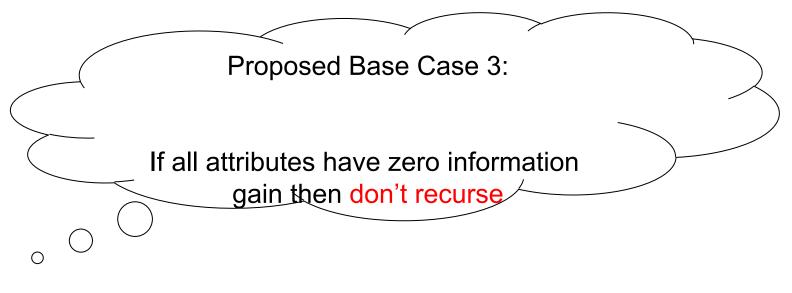


Base Cases

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

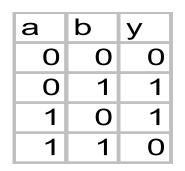
Base Cases: An idea

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse



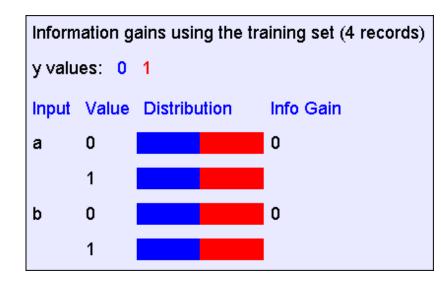
•Is this a good idea?

The problem with Base Case 3

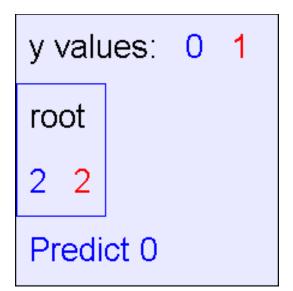


y = a XOR b

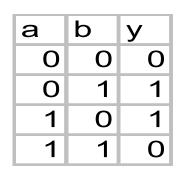
The information gains:



The resulting decision tree:



If we omit Base Case 3:



y = a XOR b

The resulting decision tree:

