ECE 5984: Introduction to Machine Learning

Topics:

- Neural Networks
 - Backprop

Readings: Murphy 16.5

Dhruv Batra Virginia Tech

Administrativia

- HW3
 - Due: in 2 weeks
 - You will implement primal & dual SVMs
 - Kaggle competition: Higgs Boson Signal vs Background classification
 - <u>https://inclass.kaggle.com/c/2015-Spring-vt-ece-machine-learning-hw3</u>
 - <u>https://www.kaggle.com/c/higgs-boson</u>

Administrativia

- Project Mid-Sem Spotlight Presentations
 - Friday: 5-7pm, 3-5pm Whittemore 654
 - 5 slides (recommended)
 - 4 minute time (STRICT) + 1-2 min Q&A
 - Tell the class what you're working on
 - Any results yet?
 - Problems faced?
 - Upload slides on Scholar

Recap of Last Time

Not linearly separable data

- Some datasets are **not linearly separable!**
 - <u>http://www.eee.metu.edu.tr/~alatan/Courses/Demo/</u>
 <u>AppletSVM.html</u>

Addressing non-linearly separable data – Option 1, non-linear features

- Choose non-linear features, e.g.,
 - Typical linear features: $w_0 + \sum_i w_i x_i$
 - Example of non-linear features:
 - Degree 2 polynomials, $w_0 + \sum_i w_i x_i + \sum_{ij} w_{ij} x_i x_j$
- Classifier $h_w(\mathbf{x})$ still linear in parameters \mathbf{w}
 - As easy to learn
 - Data is linearly separable in higher dimensional spaces
 - Express via kernels

Addressing non-linearly separable data – Option 2, non-linear classifier

- Choose a classifier h_w(x) that is non-linear in parameters w, e.g.,
 - Decision trees, neural networks,...
- More general than linear classifiers
- But, can often be harder to learn (non-convex optimization required)
- Often very useful (outperforms linear classifiers)
- In a way, both ideas are related

Biological Neuron

Recall: The Neuron Metaphor

- Neurons
 - accept information from multiple inputs,
 - transmit information to other neurons.
- Multiply inputs by weights along edges
- Apply some function to the set of inputs at each node

Slide Credit: HKUST

Limitation

- A single "neuron" is still a linear decision boundary
- What to do?
- Idea: Stack a bunch of them together!

Multilayer Networks

- Cascade Neurons together
- The output from one layer is the input to the next
- Each Layer has its own sets of weights

Universal Function Approximators

- Theorem
 - 3-layer network with linear outputs can uniformly approximate any continuous function to arbitrary accuracy, given enough hidden units [Funahashi '89]

Plan for Today

- Neural Networks
 - Parameter learning
 - Backpropagation

Forward Propagation

• On board

Gradient Computation

- First let's try:
 - Single Neuron for Linear Regression
 - Single Neuron for Logistic Regresion

Logistic regression

• Learning rule – MLE:

$$\frac{\partial \ell(W)}{\partial w_i} = \sum_j x_i^j [y^j - P(Y^j = 1 \mid x^j, W)]$$
$$= \sum_j x_i^j [y^j - g(w_0 + \sum_i w_i x_i^j)]$$

$$w_{i} \leftarrow w_{i} + \eta \sum_{j} x_{i}^{j} \delta^{j}$$
$$\delta^{j} = y^{j} - g(w_{0} + \sum_{i} w_{i} x_{i}^{j})$$

Slide Credit: Carlos Guestrin

Gradient Computation

- First let's try:
 - Single Neuron for Linear Regression
 - Single Neuron for Logistic Regresion

- Now let's try the general case
- Backpropagation!
 - Really efficient

Neural Nets

- Best performers on OCR
 - <u>http://yann.lecun.com/exdb/lenet/index.html</u>

- NetTalk
 - Text to Speech system from 1987
 - <u>http://youtu.be/tXMaFhO6dIY?t=45m15s</u>

- Rick Rashid speaks Mandarin
 - <u>http://youtu.be/Nu-nlQqFCKg?t=7m30s</u>

Neural Networks

- Demo
 - <u>http://neuron.eng.wayne.edu/bpFunctionApprox/</u>
 <u>bpFunctionApprox.html</u>

Historical Perspective

Convergence of backprop

- Perceptron leads to convex optimization
 - Gradient descent reaches global minima
- Multilayer neural nets **not convex**
 - Gradient descent gets stuck in local minima
 - Hard to set learning rate
 - Selecting number of hidden units and layers = fuzzy process
 - NNs had fallen out of fashion in 90s, early 2000s
 - Back with a new name and significantly improved performance!!!!
 - Deep networks
 - Dropout and trained on much larger corpus

Overfitting

- Many many many parameters
- Avoiding overfitting?
 - More training data
 - Regularization
 - Early stopping

A quick note

Fig. 4. (a) Not recommended: the standard logistic function, $f(x) = 1/(1 + e^{-x})$. (b) Hyperbolic tangent, $f(x) = 1.7159 \tanh\left(\frac{2}{3}x\right)$.

Rectified Linear Units (ReLU)

Convolutional Nets

- Basic Idea
 - On board
 - Assumptions:
 - Local Receptive Fields
 - Weight Sharing / Translational Invariance / Stationarity
 - Each layer is just a convolution!

FULLY CONNECTED NEURAL NET

Slide Credit: Marc'Aurelio Ranzato

LOCALLY CONNECTED NEURAL NET

Ranzato 🚼

LOCALLY CONNECTED NEURAL NET

LOCALLY CONNECTED NEURAL NET

CONVOLUTIONAL NET

Convolutions with learned kernels

Nide Credit: Marc'Aurelio Ranzato

CONVOLUTIONAL NET

64 Ranzato 🚼

NEURAL NETS FOR VISION

- A standard neural net applied to images:
- scales quadratically with the size of the input
- does not leverage stationarity

Solution:

- connect each hidden unit to a small patch of the input
- share the weight across hidden units

This is called: convolutional network.

LeCun et al. "Gradient-based learning applied to document recognition" IEEE 1998

CONVOLUTIONAL NET

Let us assume filter is an "eye" detector.

Q.: how can we make the detection robust to the exact location of the eye?

CONVOLUTIONAL NET

By "pooling" (e.g., max or average) filter responses at different locations we gain robustness to the exact spatial location of features.

Convolutional Nets

- Example:
 - <u>http://yann.lecun.com/exdb/lenet/index.html</u>

Building an Object Recognition System

IDEA: Use data to optimize features for the given task.

Slide Credit: Marc'Aurelio Ranzato

Building an Object Recognition System

What we want: Use parameterized function such that a) features are computed efficiently b) features can be trained efficiently

Building an Object Recognition System

- Everything becomes adaptive.
- No distiction between feature extractor and classifier.
- Big non-linear system trained from raw pixels to labels.

Visualizing Learned Filters

Visualizing Learned Filters

Visualizing Learned Filters

(C) Dhruv Batra

Figure Credit: [Zeiler & Fergus ECCV14]

Autoencoders

- Goal
 - Compression: Output tries to predict input

Autoencoders

- Goal
 - Learns a low-dimensional "basis" for the data

Stacked Autoencoders

• How about we compress the low-dim features more?

Input Features II Output (Features I)

Sparse DBNs [Lee et al. ICML '09] Figure courtesy: Quoc Le 52

Stacked Autoencoders

• Finally perform classification with these low-dim features.

What you need to know about neural networks

- Perceptron:
 - Representation
 - Derivation
- Multilayer neural nets
 - Representation
 - Derivation of backprop
 - Learning rule
 - Expressive power