ECE 5984: Introduction to
Machine Learning

Topics:
— Neural Networks
— Backprop

Readings: Murphy 16.5
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Administrativia

« HW3

— Due: in 2 weeks
— You will implement primal & dual SVMs

— Kaggle competition: Higgs Boson Signal vs Background
classification

— https://inclass.kaggle.com/c/2015-Spring-vt-ece-machine-
learning-hw3

— https://www.kaggle.com/c/higgs-boson
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Administrativia

* Project Mid-Sem Spotlight Presentations
— Friday: 5-#pm, 3-5pm Whittemore 654

— 5 slides (recommended)
— 4 minute time (STRICT) + 1-2 min Q&A

— Tell the class what you're working on
— Any results yet?

— Problems faced?

— Upload slides on Scholar
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Recap of Last Time
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Not linearly separable data

 Some datasets are not linearly separable!

— http://www.eee.metu.edu.tr/~alatan/Courses/Demo/
AppletSVM.html




-
Addressing non-linearly separable data —

Option 1, non-linear features

* Choose non-linear features, e.g.,
— Typical linear features: w, + Y. w; X;
— Example of non-linear features:

- Degree 2 polynomials, wy + 3, W, X; + i W; X; X,

» Classifier h(x) still linear in parameters w

— As easy to learn
— Data is linearly separable in higher dimensional spaces
— Express via kernels
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Addressing non-linearly separable data —

Option 2, non-linear classifier

» Choose a classifier h,(x) that is non-linear in
parameters w, e.g.,
— Decision trees, neural networks,...

« More general than linear classifiers

« But, can often be harder to learn (non-convex
optimization required)

« Often very useful (outperforms linear classifiers)
* In a way, both ideas are related
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Biological Neuron
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Recall: The Neuron Metaphor

« Neurons
— accept information from multiple inputs,
— transmit information to other neurons.

« Multiply inputs by weights along edges
» Apply some function to the set of inputs at each node

Sort of what a neuron
looks like
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. Types of Neurons
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Potentially more. Require a convex

loss function for gradient descent training.
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Limitation

« A single “neuron’ is still a linear decision boundary

« What to do?

* lIdea: Stack a bunch of them together!
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Multilayer Networks

« (Cascade Neurons together
« The output from one layer is the input to the next
« Each Layer has its own sets of weights

Slide Credit: HKUST 12



e
Universal Function Approximators

e Theorem

— 3-layer network with linear outputs can uniformly
approximate any continuous function to arbitrary accuracy,
given enough hidden units [Funahashi "89]

(C) Dhruv Batra 13



Plan for Today

* Neural Networks
— Parameter learning
— Backpropagation
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Forward Propagation

e On board
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Feed-Forward Networks

* Predictions are fed forward through the network to
classify
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Feed-Forward Networks

* Predictions are fed forward through the network to
classify
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Feed-Forward Networks

* Predictions are fed forward through the network to
classify
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Feed-Forward Networks

* Predictions are fed forward through the network to

classify
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Feed-Forward Networks

* Predictions are fed forward through the network to
classify
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Feed-Forward Networks

* Predictions are fed forward through the network to
classify
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Gradient Computation

* First let’s try:
— Single Neuron for Linear Regression
— Single Neuron for Logistic Regresion
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Logistic regression

e Learning rule — MLE:
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Gradient Computation

* First let’s try:
— Single Neuron for Linear Regression
— Single Neuron for Logistic Regresion

* Now let’s try the general case

« Backpropagation!
— Really efficient
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Neural Nets

* Best performers on OCR

— http://yann.lecun.com/exdb/lenet/index.html

* NetTalk

— Text to Speech system from 1987
— http://lyoutu.be/tXMaFhO6d1Y?t=45m15s

* Rick Rashid speaks Mandarin
— http://lyoutu.be/Nu-nlIQgFCKg?t=7m30s
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Neural Networks

 Demo

— http://neuron.eng.wayne.edu/bpFunctionApprox/
bpFunctionApprox.html
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Historical Perspective
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Convergence of backprop

* Perceptron leads to convex optimization

Gradient descent reaches global minima

* Multilayer neural nets not convex

(C) Dhruv Batra

Gradient descent gets stuck in local minima
Hard to set learning rate

Selecting number of hidden units and layers = fuzzy
process

NNs had fallen out of fashion in 90s, early 2000s

Back with a new name and significantly improved
performance!!!!
* Deep networks
— Dropout and trained on much larger corpus
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Overfitting

 Many many many parameters

 Avoiding overfitting?
— More training data
— Regularization
— Early stopping
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A quick note
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Fig. 4. (a) Not recommended: the standard logistic function, f(x) =1/(1 +e™ ). (b)
Hyperbolic tangent, f(z) = 1.7159 tanh (%:c)
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Image Credit: LeCun et al. ‘98
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Rectified Linear Units (ReLU)

—Rett ./ — loglexp(x) + 1)
— Logistic : 10} —  Max(0, x) L,
D i 11 + explx))
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Convolutional Nets

 Basic Ildea
— On board

— Assumptions:
* Local Receptive Fields
» Weight Sharing / Translational Invariance / Stationarity

— Each layer is just a convolution!

Sub-sampling

Input image Convolutional layer
P & Y layer
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FULLY CONNECTED NEURAL NET

Example: 1000x1000 image
~ IM hidden units
- 10712 parametersl!!!

- Spatial correlation is local

- Better to put resources elsewherel! “©

Ranzato -"
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LOCALLY CONNECTED NEURAL NET

Example: 1000x1000 image
IM hidden units
Filter size: 10x10
100M parameters
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LOCALLY CONNECTED NEURAL NET

&

Example: 1000x1000 image
\ . 1M hidden units

Filter size: 10x10
100M parameters

Slide Credit: Marc'Aurelio Ranzato Ranzafo ’



LOCALLY CONNECTED NEURAL NET

STATIONARITY? Statistics is
similar at different locations

Example: 1000x1000 image
IM hidden units
Filter size: 10x10
100M parameters
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CONVOLUTIONAL NET

Share the same parameters across
different locations:
4 Convolutions with learned kernels

\\”
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CONVOLUTIONAL NET

E.g.: 1000x1000 image
100 Filters
Filter size: 10x10
10K parameters
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NEURAL NETS FOR VISION

A standard neural net applied to images:
- scales quadratically with the size of the input

- does not leverage stationarity

Solution:
- connect each hidden unit to a small patch of the input

- share the weight across hidden units

This is called: convolutional network.

LeCun et al. "Gradient-based learning applied to document recognition” IEEE 1998
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CONVOLUTIONAL NET

Let us assume filter is an “eye"” detector.

Q.: how can we make the detection robust
to the exact location of the eye?
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CONVOLUTIONAL NET

By "pooling” (e.g., max or average) filter
responses at different locations we gain
robustness to the exact spatial location
of features.
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Convolutional Nets

« Example:
— http://vann.lecun.com/exdb/lenet/index.html

C3:f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
30430 6@28x28

S2: f. maps
6@14x14

Co:layer Fe:layer OUTPUT

‘ Full conAection Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection
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Building an Object Recognition System

\\CA Rl'

IDEA: Use data to optimize features for the given task.

5
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Building an Object Recognition System

\\CA Rl'

CLASSIFIER

What we want: Use parameterized function such that
a) features are computed efficiently
b) features can be trained efficiently

3
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Building an Object Recognition System

END-TO-END
RECOGNITION

SYSTEM

- Everything becomes adaptive.
- No distiction between feature extractor and classifier.
- Big non-linear system trained from raw pixels fo labels.

4
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Visualizing Learned Filters

\/
Layer 1

46

Figure Credit: [Zeiler & Fergus ECCV14]
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Visualizing Learned Filters
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Autoencoders

« Goal
— Compression: Output tries to predict input

Input Features | Output

(C) Dhruv Batra Image Credit: http://ufldl.stanford.edu/wiki/index.php/Stacked Autoencoders 49
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Autoencoders

« (Goal
— Learns a low-dimensional “basis” for the data

"FI A SRl
..i'li’ll AME IF'I
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Stacked Autoencoders

 How about we compress the low-dim features more?

Input Features Il Output
(Features 1)

(C) Dhruv Batra Image Credit: http://ufldl.stanford.edu/wiki/index.php/Stacked Autoencoders 51
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Face detectors

Face parts
(combination
of edges)

Sparse DBNs
[Lee et al. ICML ‘09]

Figure courtesy: Quoc Le
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Stacked Autoencoders

* Finally perform classification with these low-dim
features.

—> Py=0| x)
—> Ply=1| x)

—> Ply=2|x)

Input Features | Features Il Softmax
classifier

(C) Dhruv Batra Image Credit: http://ufldl.stanford.edu/wiki/index.php/Stacked Autoencoders 53



]
What you need to know about neural networks

« Perceptron:
— Representation
— Derivation

* Multilayer neural nets
— Representation
— Derivation of backprop
— Learning rule
— Expressive power



