ECE 5984: Introduction to Machine Learning

Topics:

- SVM
- Multi-class SVMs
- Neural Networks
- Multi-layer Perceptron

Readings: Barber 17.5, Murphy 16.5
Dhruv Batra
Virginia Tech

HW2 Graded

- Mean 66/61 = 108\%
- Min: 47
- Max: 75

(C) Dhruv Batra

Score

Administrativia

- HW3
- Due: in 2 weeks
- You will implement primal \& dual SVMs
- Kaggle competition: Higgs Boson Signal vs Background classification
- https://inclass.kaggle.com/c/2015-Spring-vt-ece-machine-learning-hw3
- https://www.kaggle.com/c/higgs-boson

Administrativia

- Project Mid-Sem Spotlight Presentations
- Friday: 5-7pm, Whittemore 654
- 5 slides (recommended)
- 4 minute time (STRICT) + 1-2 min Q\&A
- Tell the class what you're working on
- Any results yet?
- Problems faced?
- Upload slides on Scholar

Recap of Last Time

Linear classifiers - Which line is better?

$$
\mathbf{w} \cdot \mathbf{x}=\sum_{\mathrm{j}} \mathbf{w}^{(\mathrm{j})} \mathbf{x}^{(\mathrm{j})}
$$

Dual SVM derivation (1) the linearly separable case

$$
\begin{aligned}
& \operatorname{minimize}_{\mathbf{w}, b} \quad \frac{1}{2} \mathrm{w} \cdot \mathbf{w} \\
& \left(\mathbf{w} \cdot \mathbf{x}_{j}+b\right) y_{j} \geq 1, \quad \forall j
\end{aligned}
$$

Dual SVM derivation (1) the linearly separable case

$$
\begin{aligned}
& L(\mathbf{w}, \alpha)=\frac{1}{2} \mathbf{w} \cdot \mathbf{w}-\sum_{j} \alpha_{j}\left[\left(\mathbf{w} \cdot \mathbf{x}_{j}+b\right) y_{j}-1\right] \\
& \alpha_{j} \geq 0, \forall j
\end{aligned}
$$

$$
\mathbf{w}=\sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}
$$

Dual SVM formulation the linearly separable case

$\operatorname{maximize}_{\alpha} \quad \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$

$$
\begin{aligned}
& \sum_{i} \alpha_{i} y_{i}=0 \\
& \alpha_{i} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{w}=\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \\
& b=y_{k}-\mathbf{w} \cdot \mathbf{x}_{k}
\end{aligned}
$$

$$
\text { for any } k \text { where } \alpha_{k}>0
$$

Dual SVM formulation the non-separable case

$\operatorname{minimize}_{\mathbf{w}, b} \quad \frac{1}{2} \mathbf{w} \cdot \mathbf{w}+C \sum_{j} \xi_{j}$

$$
\begin{aligned}
&\left(\mathbf{w} \cdot \mathbf{x}_{j}+b\right) y_{j} \geq 1-\xi_{j}, \forall j \\
& \xi_{j} \geq 0, \forall j
\end{aligned}
$$

Dual SVM formulation the non-separable case

$\operatorname{maximize}_{\alpha} \quad \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$

$$
\begin{aligned}
& \sum_{i} \alpha_{i} y_{i}=0 \\
& C \geq \alpha_{i} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{w}=\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \\
& b=y_{k}-\mathbf{w} \cdot \mathbf{x}_{k}
\end{aligned}
$$

for any k where $C>\alpha_{k}>0$

Why did we learn about the dual SVM?

- Builds character!
- Exposes structure about the problem
- There are some quadratic programming algorithms that can solve the dual faster than the primal
- The "kernel trick"!!!

Dual SVM interpretation: Sparsity

(C) Dhruv Batra

Dual formulation only depends on dot-products, not on w!

$\operatorname{maximize}_{\alpha} \quad \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$

$$
\begin{aligned}
& \sum_{i} \alpha_{i} y_{i}=0 \\
& C \geq \alpha_{i} \geq 0
\end{aligned}
$$

$\operatorname{maximize}_{\alpha} \quad \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$

$$
\begin{aligned}
& K\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)=\Phi\left(\mathrm{x}_{i}\right) \cdot \Phi\left(\mathrm{x}_{j}\right) \\
& \sum_{i} \alpha_{i} y_{i}=0 \\
& C \geq \alpha_{i} \geq 0
\end{aligned}
$$

Common kernels

- Polynomials of degree d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v})^{d}
$$

- Polynomials of degree up to d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v}+1)^{d}
$$

- Gaussian kernel / Radial Basis Function

$$
K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|^{2}}{2 \sigma^{2}}\right)
$$

- Sigmoid

$$
K(\mathbf{u}, \mathbf{v})=\tanh (\eta \mathbf{u} \cdot \mathbf{v}+\nu)
$$

Plan for Today

- SVMs
- Multi-class
- Neural Networks

What about multiple classes?

(C) Dhruv Batra

Slide Credit: Carlos Guestrin

One against All (Rest)

Learn N classifiers:

One against One

Problems

Learn 1 classifier: Multiclass SVM

Learn 1 classifier: Multiclass SVM

$\operatorname{minimize}_{\mathbf{w}, b} \quad \sum_{y} \mathbf{w}^{(y)} \cdot \mathbf{w}^{(y)}+C \sum_{j} \xi_{j}$ $\mathbf{w}^{\left(y_{j}\right)} \cdot \mathbf{x}_{j}+b^{\left(y_{j}\right)} \geq \mathbf{w}^{\left(y^{\prime}\right)} \cdot \mathbf{x}_{j}+b^{\left(y^{\prime}\right)}+1-\xi_{j}, \forall y^{\prime} \neq y_{j}, \forall j$ $\xi_{j} \geq 0, \forall j$

(C) Dhruv Batra

Not linearly separable data

- Some datasets are not linearly separable!
- http://www.eee.metu.edu.tr/~alatan/Courses/Demol AppletSVM.html

Addressing non-linearly separable data Option 1, non-linear features

- Choose non-linear features, e.g.,
- Typical linear features: $w_{0}+\sum_{i} w_{i} x_{i}$
- Example of non-linear features:
- Degree 2 polynomials, $\mathrm{w}_{0}+\sum_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}+\sum_{\mathrm{ij}} \mathrm{w}_{\mathrm{ij}} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}$
- Classifier $\mathrm{h}_{\mathrm{w}}(\mathbf{x})$ still linear in parameters \mathbf{w}
- As easy to learn
- Data is linearly separable in higher dimensional spaces
- Express via kernels

Addressing non-linearly separable data Option 2, non-linear classifier

- Choose a classifier $h_{w}(\mathbf{x})$ that is non-linear in parameters w, e.g.,
- Decision trees, neural networks,...
- More general than linear classifiers
- But, can often be harder to learn (non-convex optimization required)
- Often very useful (outperforms linear classifiers)
- In a way, both ideas are related

New Topic: Neural Networks

A Motor Neuron

Synonyms

- Neural Networks
- Artificial Neural Network (ANN)
- Feed-forward Networks
- Multilayer Perceptrons (MLP)
- Types of ANN
- Convolutional Nets
- Autoencoders
- Recurrent Neural Nets
- [Back with a new name]: Deep Nets / Deep Learning

Biological Neuron

A Motor Neuron

Artificial "Neuron"

- Perceptron (with step function)
- Logistic Regression (with sigmoid)

Sigmoid

$$
\begin{gathered}
g\left(w_{0}+\sum_{i} w_{i} x_{i}\right)=\frac{1}{1+e^{-\left(w_{0}+\sum_{i} w_{i} x_{i}\right)}} \\
\mathrm{w}_{0}=2, \mathrm{w}_{1}=1 \\
\mathrm{w}_{0}=0, \mathrm{w}_{1}=1
\end{gathered}
$$

Many possible response functions

- Linear
- Sigmoid
- Exponential
- Gaussian

Limitation

- A single "neuron" is still a linear decision boundary
- What to do?

Limitation

- A single "neuron" is still a linear decision boundary
- What to do?
- Idea: Stack a bunch of them together!

Hidden layer

- 1-hidden layer (or 3-layer network):
- On board

Neural Nets

- Best performers on OCR
- http://yann.lecun.com/exdb/lenet/index.html
- NetTalk
- Text to Speech system from 1987
- http://youtu.be/tXMaFhO6dIY?t=45m15s
- Rick Rashid speaks Mandarin
- http://youtu.be/Nu-nlQqFCKg?t=7m30s

Universal Function Approximators

- Theorem
- 3-layer network with linear outputs can uniformly approximate any continuous function to arbitrary accuracy, given enough hidden units [Funahashi '89]

Neural Networks

- Demo
- http://neuron.eng.wayne.edu/bpFunctionApprox/ bpFunctionApprox.html

