ECE 5984: Introduction to Machine Learning

Topics:

- SVM
- SVM dual \& kernels
- Multi-class SVMs

Readings: Barber 17.5

Dhruv Batra
Virginia Tech

Lagrangian Duality

- On paper

Saddle Points

Dual SVM derivation (1) the linearly separable case

$$
\begin{aligned}
& \operatorname{minimize}_{\mathbf{w}, b} \quad \frac{1}{2} \mathrm{w} \cdot \mathbf{w} \\
& \left(\mathbf{w} \cdot \mathbf{x}_{j}+b\right) y_{j} \geq 1, \quad \forall j
\end{aligned}
$$

Dual SVM derivation (1) the linearly separable case

$$
\begin{aligned}
& L(\mathbf{w}, \alpha)=\frac{1}{2} \mathbf{w} \cdot \mathbf{w}-\sum_{j} \alpha_{j}\left[\left(\mathbf{w} \cdot \mathbf{x}_{j}+b\right) y_{j}-1\right] \\
& \alpha_{j} \geq 0, \forall j
\end{aligned}
$$

$$
\mathbf{w}=\sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}
$$

Dual SVM formulation the linearly separable case

$\operatorname{maximize}_{\alpha} \quad \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$

$$
\begin{aligned}
& \sum_{i} \alpha_{i} y_{i}=0 \\
& \alpha_{i} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{w}=\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \\
& b=y_{k}-\mathbf{w} \cdot \mathbf{x}_{k}
\end{aligned}
$$

$$
\text { for any } k \text { where } \alpha_{k}>0
$$

Dual SVM formulation the non-separable case

$\operatorname{minimize}_{\mathbf{w}, b} \quad \frac{1}{2} \mathbf{w} \cdot \mathbf{w}+C \sum_{j} \xi_{j}$

$$
\begin{aligned}
&\left(\mathbf{w} \cdot \mathbf{x}_{j}+b\right) y_{j} \geq 1-\xi_{j}, \forall j \\
& \xi_{j} \geq 0, \forall j
\end{aligned}
$$

Dual SVM formulation the non-separable case

$\operatorname{maximize}_{\alpha} \quad \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$

$$
\begin{aligned}
& \sum_{i} \alpha_{i} y_{i}=0 \\
& C \geq \alpha_{i} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{w}=\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \\
& b=y_{k}-\mathbf{w} \cdot \mathbf{x}_{k}
\end{aligned}
$$

for any k where $C>\alpha_{k}>0$

Why did we learn about the dual SVM?

- Builds character!
- Exposes structure about the problem
- There are some quadratic programming algorithms that can solve the dual faster than the primal
- The "kernel trick"!!!

Dual SVM interpretation: Sparsity

(C) Dhruv Batra

Dual formulation only depends on dot-products, not on w!

$\operatorname{maximize}_{\alpha} \quad \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$

$$
\begin{aligned}
& \sum_{i} \alpha_{i} y_{i}=0 \\
& C \geq \alpha_{i} \geq 0
\end{aligned}
$$

$\operatorname{maximize}_{\alpha} \quad \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$

$$
\begin{aligned}
& K\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)=\Phi\left(\mathrm{x}_{i}\right) \cdot \Phi\left(\mathrm{x}_{j}\right) \\
& \sum_{i} \alpha_{i} y_{i}=0 \\
& C \geq \alpha_{i} \geq 0
\end{aligned}
$$

Dot-product of polynomials

$$
\Phi(\mathbf{u})=\text { Vector of Monomials of degree } m
$$

Higher order polynomials

\#terms $=D=\binom{m+d-1}{m}=\frac{(m+d-1)!}{m!(d-1)!}$
d - input features
m - degree of polynomial

$$
\begin{gathered}
\text { grows fast! } \\
m=6, d=100 \\
D=\text { about } 1.6 \text { billion terms }
\end{gathered}
$$

Common kernels

- Polynomials of degree d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v})^{d}
$$

- Polynomials of degree up to d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v}+1)^{d}
$$

- Gaussian kernel / Radial Basis Function

$$
K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|^{2}}{2 \sigma^{2}}\right)
$$

- Sigmoid

$$
K(\mathbf{u}, \mathbf{v})=\tanh (\eta \mathbf{u} \cdot \mathbf{v}+\nu)
$$

Kernel Demo

- Demo
- http://www.eee.metu.edu.tr/~alatan/Courses/Demo/ AppletSVM.html

What is a kernel?

- $k: X x X \rightarrow R$
- Any measure of "similarity" between two inputs
- Mercer Kernel / Positive Semi-Definite Kernel
- Often just called "kernel"

How to Check if a Function is a Kernel

Problem:

- Checking if a given $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ fulfills the conditions for a kernel is difficult:
- We need to prove or disprove

$$
\sum_{i, j=1}^{n} t_{i} k\left(x_{i}, x_{j}\right) t_{j} \geq 0 .
$$

for any set $x_{1}, \ldots, x_{n} \in \mathcal{X}$ and any $t \in \mathbb{R}^{n}$ for any $n \in \mathbb{N}$.
Workaround:

- It is easy to construct functions k that are positive definite kernels.

Constructing Kernels

1) We can construct kernels from scratch:

- For any $\varphi: \mathcal{X} \rightarrow \mathbb{R}^{m}, k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathbb{R}^{m}}$ is a kernel.

Constructing Kernels

1) We can construct kernels from scratch:

- For any $\varphi: \mathcal{X} \rightarrow \mathbb{R}^{m}, k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathbb{R}^{m}}$ is a kernel.
- If $d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a distance function, i.e.
- $d\left(x, x^{\prime}\right) \geq 0 \quad$ for all $x, x^{\prime} \in \mathcal{X}$,
- $d\left(x, x^{\prime}\right)=0 \quad$ only for $x=x^{\prime}$,
- $d\left(x, x^{\prime}\right)=d\left(x^{\prime}, x\right) \quad$ for all $x, x^{\prime} \in \mathcal{X}$,
- $d\left(x, x^{\prime}\right) \leq d\left(x, x^{\prime \prime}\right)+d\left(x^{\prime \prime}, x^{\prime}\right)$ for all $x, x^{\prime}, x^{\prime \prime} \in \mathcal{X}$, then $k\left(x, x^{\prime}\right):=\exp \left(-d\left(x, x^{\prime}\right)\right)$ is a kernel.

Constructing Kernels

1) We can construct kernels from scratch:

- For any $\varphi: \mathcal{X} \rightarrow \mathbb{R}^{m}, k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathbb{R}^{m}}$ is a kernel.
- If $d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a distance function, i.e.
- $d\left(x, x^{\prime}\right) \geq 0$ for all $x, x^{\prime} \in \mathcal{X}$,
- $d\left(x, x^{\prime}\right)=0 \quad$ only for $x=x^{\prime}$,
- $d\left(x, x^{\prime}\right)=d\left(x^{\prime}, x\right) \quad$ for all $x, x^{\prime} \in \mathcal{X}$,
- $d\left(x, x^{\prime}\right) \leq d\left(x, x^{\prime \prime}\right)+d\left(x^{\prime \prime}, x^{\prime}\right)$ for all $x, x^{\prime}, x^{\prime \prime} \in \mathcal{X}$, then $k\left(x, x^{\prime}\right):=\exp \left(-d\left(x, x^{\prime}\right)\right)$ is a kernel.

2) We can construct kernels from other kernels:

- if k is a kernel and $\alpha>0$, then αk and $k+\alpha$ are kernels.
- if k_{1}, k_{2} are kernels, then $k_{1}+k_{2}$ and $k_{1} \cdot k_{2}$ are kernels.

Finally: the "kernel trick"!

$$
\begin{aligned}
\operatorname{maximize}_{\alpha} & \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
& K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\Phi\left(\mathbf{x}_{i}\right) \cdot \Phi\left(\mathbf{x}_{j}\right) \\
& \sum_{i} \alpha_{i} y_{i}=0 \\
& C \geq \alpha_{i} \geq 0
\end{aligned}
$$

- Never represent features explicitly
- Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features
- Very interesting theory - Reproducing Kernel Hilbert Spaces

$$
\begin{aligned}
& \mathbf{w}=\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \\
& b=y_{k}-\mathbf{w} \cdot \mathbf{x}_{k}
\end{aligned}
$$

for any k where $C>\alpha_{k}>0$

Kernels in Computer Vision

- Features $x=$ histogram (of color, texture, etc)
- Common Kernels
- Intersection Kernel
- Chi-square Kernel

$$
\begin{aligned}
K_{\text {intersect }}(\boldsymbol{u}, \boldsymbol{v}) & =\sum_{i} \min \left(u_{i}, v_{i}\right) \\
K_{\chi^{2}}(\boldsymbol{u}, \boldsymbol{v}) & =\sum_{i} \frac{2 u_{i} v_{i}}{u_{i}+v_{i}}
\end{aligned}
$$

$K_{\text {min }}(x, y)=\min (x, y)$

(C) Dhruv Batra

What about at classification time

- For a new input \mathbf{x}, if we need to represent $\Phi(\mathbf{x})$, we are in trouble!
- Recall classifier: $\operatorname{sign}(\mathbf{w} . \Phi(\mathbf{x})+\mathrm{b})$
- Using kernels we are fine!

$$
K(\mathbf{u}, \mathbf{v})=\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})
$$

Kernels in logistic regression

$$
P(Y=1 \mid x, \mathbf{w})=\frac{1}{1+e^{-(\mathbf{w} \cdot \Phi(\mathrm{x})+b)}}
$$

- Define weights in terms of support vectors:

$$
\begin{aligned}
\mathbf{w} & =\sum_{i} \alpha_{i} \Phi\left(\mathbf{x}_{i}\right) \\
P(Y=1 \mid x, \mathbf{w}) & =\frac{1}{1+e^{-\left(\sum_{i} \alpha_{i} \Phi\left(\mathrm{x}_{i}\right) \cdot \Phi(\mathrm{x})+b\right)}} \\
& =\frac{1}{1+e^{-\left(\sum_{i} \alpha_{i} K\left(\mathrm{x}, \mathrm{x}_{i}\right)+b\right)}}
\end{aligned}
$$

- Derive simple gradient descent rule on α_{i}

Kernels

- Kernel Logistic Regression
- Kernel Least Squares
- Kernel PCA ...

(C) Dhruv Batra

