ECE 5984: Introduction to Machine Learning

Topics:

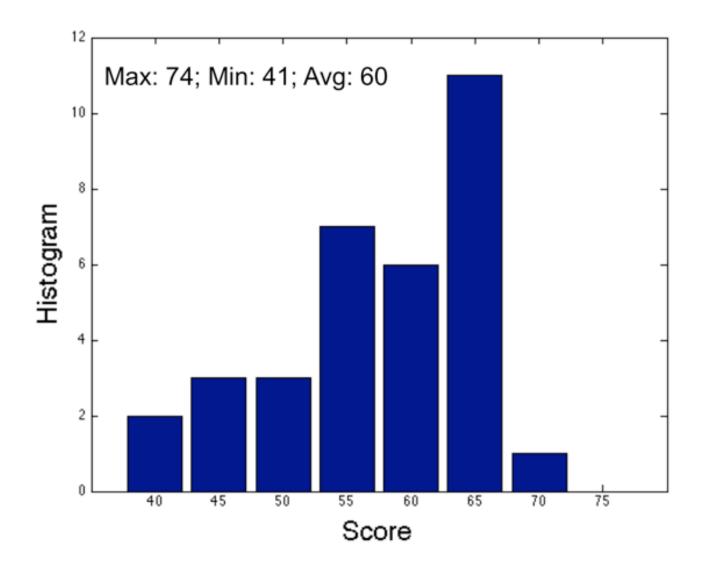
- SVM
 - Lagrangian Duality
 - SVM dual & kernels

Readings: Barber 17.5

Dhruv Batra Virginia Tech

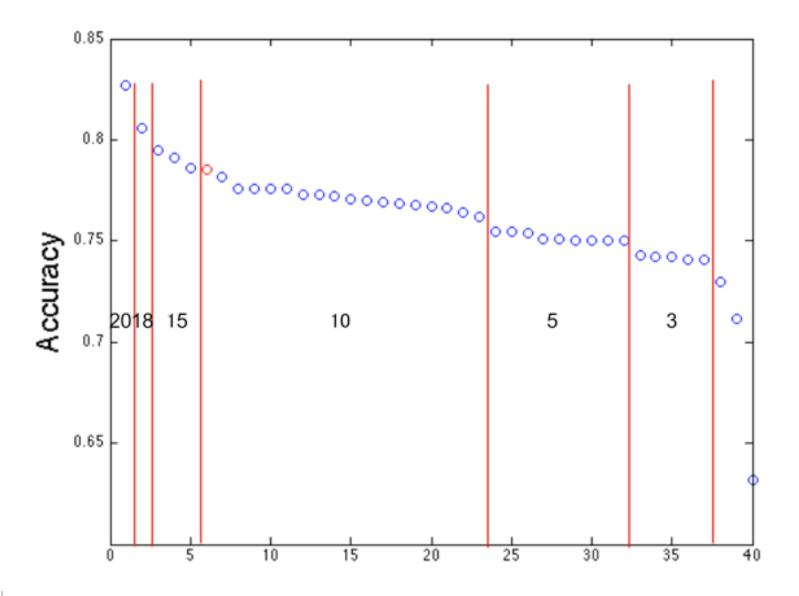
HW1 Graded

Mean 60/55 = 109%



(C) Dhruv

HW1 Extra Credit Distribution



(C) D

Administrativia

HW2

- Due: Friday 03/06, 03/15, 11:55pm
- Implement linear regression, Naïve Bayes, Logistic Regression
- Solutions available
- Kaggle discussion:
 - http://inclass.kaggle.com/c/2015-Spring-vt-ece-machine-learning-hw2

Administrativia

- Mid-term
 - Solutions available
- Feedback on Midterm Exam?
 - Too hard? Too easy? Just right?
 - Too long? Too short?

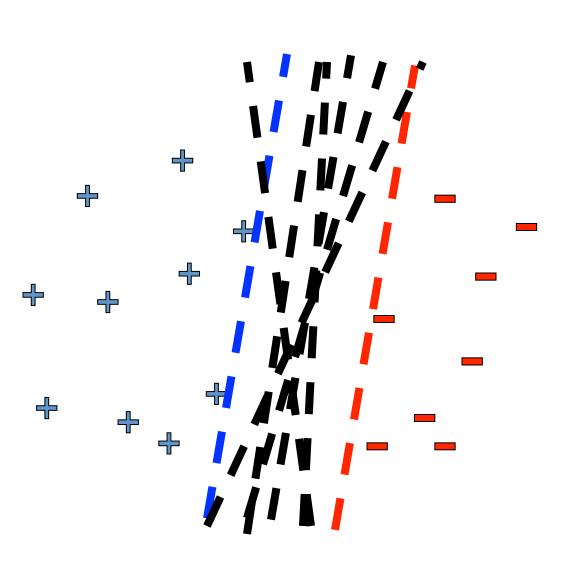
Recap of Last Time

(C) Dhruv Batra

Generative vs. Discriminative

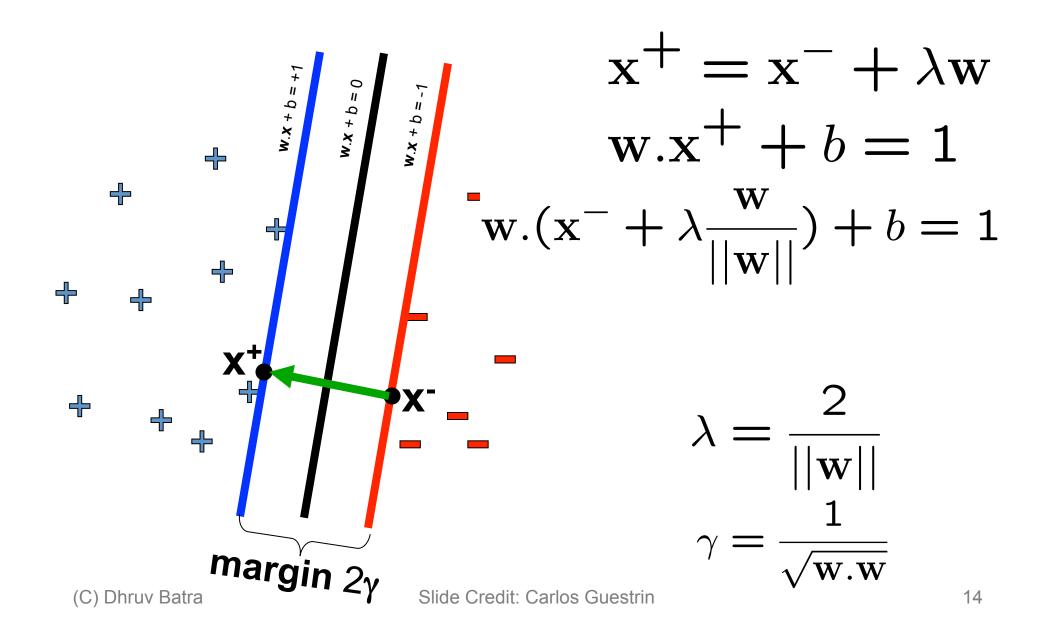
- Generative Approach (Naïve Bayes)
 - Estimate p(x|y) and p(y)
 - Use Bayes Rule to predict y
- Discriminative Approach
 - Estimate p(y|x) directly (Logistic Regression)
 - Learn "discriminant" function f(x) (Support Vector Machine)

Linear classifiers — Which line is better?

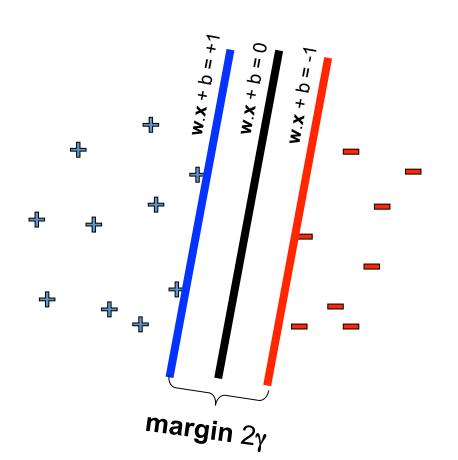


$$\mathbf{w}.\mathbf{x} = \sum_{j} \mathbf{w}^{(j)} \mathbf{x}^{(j)}$$

Margin



Support vector machines (SVMs)

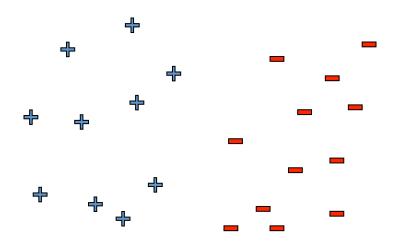


$$\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w} \\
(\mathbf{w}.\mathbf{x}_j + b) y_j \ge 1, \ \forall j$$

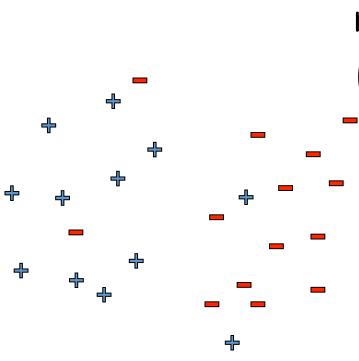
- Solve efficiently by quadratic programming (QP)
 - Well-studied solution algorithms

Hyperplane defined by support vectors

What if the data is not linearly separable?



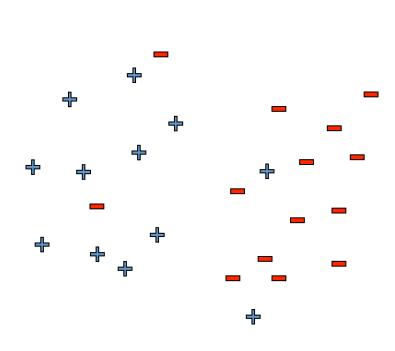
What if the data is not linearly separable?



$$\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w} \ \left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \geq 1 \qquad , orall_j$$

- Minimize w.w and number of training mistakes
 - 0/1 loss
 - Slack penalty C
 - Not QP anymore
 - Also doesn't distinguish near misses and really bad mistakes

Slack variables – Hinge loss



$$\begin{aligned} & \text{minimize}_{\mathbf{w},b} \quad \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j} \\ & \left(\mathbf{w}.\mathbf{x}_{j} + b\right) y_{j} \geq 1 - \xi_{j}, \ \forall j \\ & \quad \xi_{j} \geq 0, \ \forall j \end{aligned}$$

- If margin >= 1, don't care
- If margin < 1, pay linear penalty

Soft Margin SVM

- Effect of C
 - Matlab demo by Andrea Vedaldi

Side note: What's the difference between SVMs and logistic regression?

SVM:

$$\begin{aligned} & \text{minimize}_{\mathbf{w},b} \quad \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j} \\ & \left(\mathbf{w}.\mathbf{x}_{j} + b\right) y_{j} \geq 1 - \xi_{j}, \ \forall j \\ & \quad \xi_{j} \geq 0, \ \forall j \end{aligned}$$

Logistic regression:

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)}}$$

Log loss:

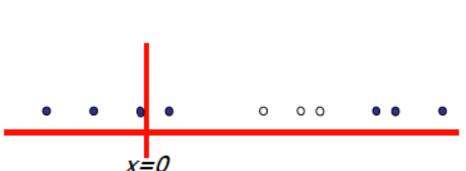
$$-\ln P(Y = 1 \mid x, \mathbf{w}) = \ln (1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)})$$



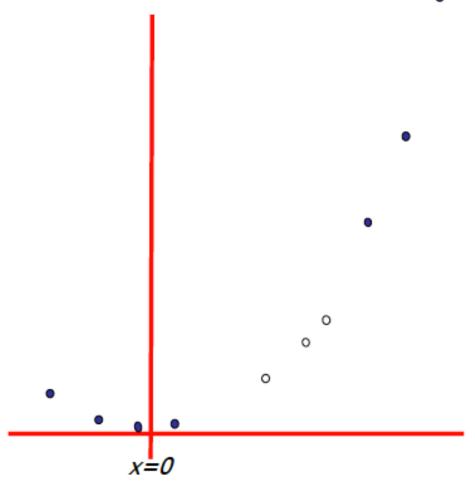
Harder 1-dimensional dataset

That's wiped the smirk off SVM's face.

What can be done about this?



Harder 1-dimensional dataset

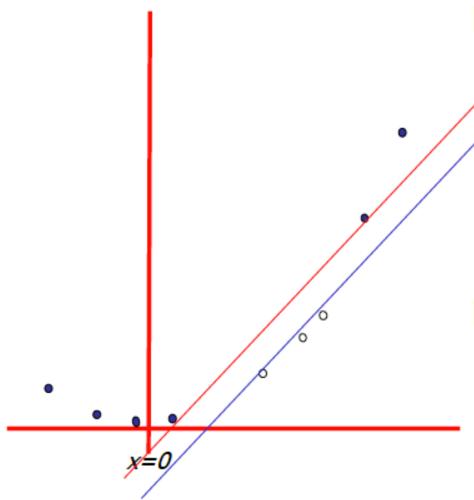


Remember how permitting non-linear basis functions made linear regression so much nicer?

Let's permit them here too

$$\mathbf{Z}_k = (x_k, x_k^2)$$

Harder 1-dimensional dataset



Remember how permitting nonlinear basis functions made linear regression so much nicer?

Let's permit them here too

$$\mathbf{Z}_k = (x_k, x_k^2)$$

Does this always work?

In a way, yes

Lemma

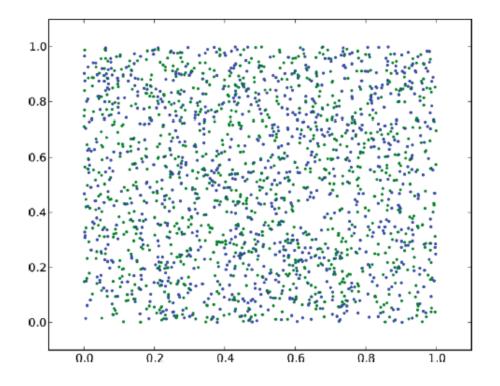
Let $(x_i)_{i=1,...,n}$ with $x_i \neq x_j$ for $i \neq j$. Let $\varphi : \mathbb{R}^k \to \mathbb{R}^m$ be a feature map. If the set $\varphi(x_i)_{i=1,...,n}$ is linearly independent, then the points $\varphi(x_i)_{i=1,...,n}$ are linearly separable.

Lemma

If we choose m>n large enough, we can always find a map φ .

Caveat

Caveat: We can separate any set, not just one with "reasonable" y_i :



There is a fixed feature map $\varphi: \mathbb{R}^2 \to \mathbb{R}^{20001}$ such that — no matter how we label them — there is always a hyperplane classifier that has 0 training error.

Kernel Trick

- One of the most interesting and exciting advancement in the last 2 decades of machine learning
 - The "kernel trick"
 - High dimensional feature spaces at no extra cost!
- But first, a detour
 - Constrained optimization!

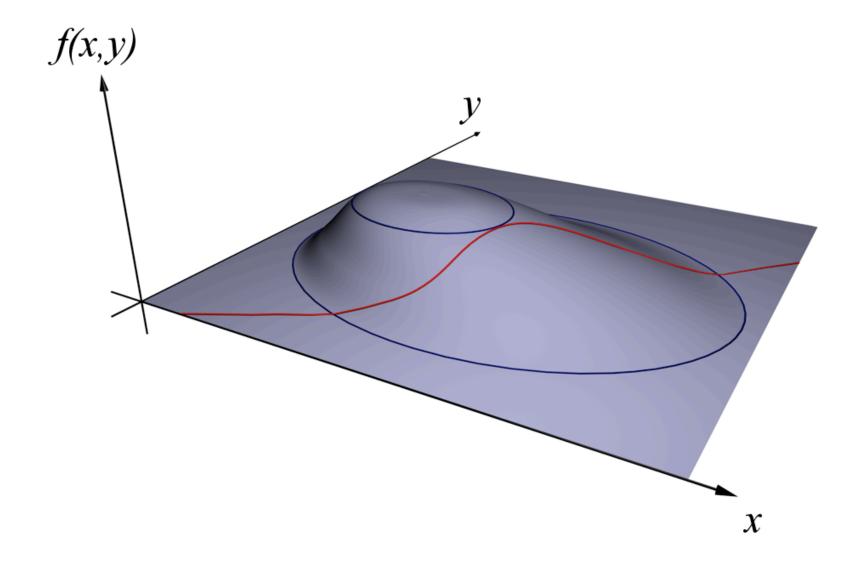
Constrained Optimization

Lagrangian Multiplier Method

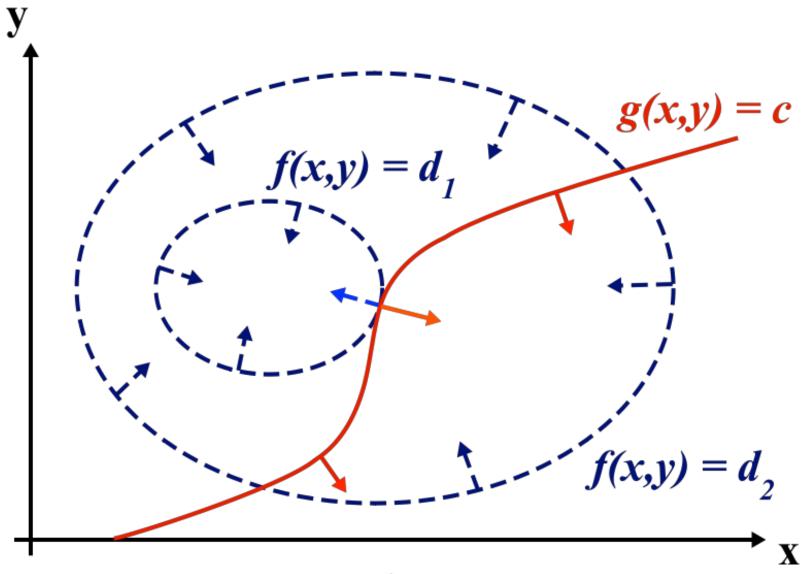
min f(w)st h(w) = 0

Define Lagrangian

Intuition



Intuition



(C) Dhruv Batra

Image Credit: Wikipedia

Lagrangian Duality

On paper