ECE 5984: Introduction to Machine Learning

Topics:

- SVM

- soft & hard margin

- comparison to Logistic Regresion

Readings: Barber 17.5

Dhruv Batra Virginia Tech

New Topic

Generative vs. Discriminative

- Generative Approach (Naïve Bayes)
 - Estimate p(x|y) and p(y)
 - Use Bayes Rule to predict y
- Discriminative Approach
 - Estimate p(y|x) directly (Logistic Regression)
 - Learn "discriminant" function f(x) (Support Vector Machine)

Linear classifiers – Which line is better?

$$\mathbf{w}.\mathbf{x} = \sum_{j} \mathbf{w}^{(j)} \mathbf{x}^{(j)}$$

Support vector machines (SVMs)

$$\begin{array}{ll} \min \operatorname{inimize}_{\mathbf{w},b} & \mathbf{w}.\mathbf{w} \\ \left(\mathbf{w}.\mathbf{x}_{j}+b\right) y_{j} \geq \mathbf{1}, \ \forall j \end{array}$$

- Solve efficiently by quadratic programming (QP)
 - Well-studied solution algorithms
- Hyperplane defined by support vectors

What if the data is not linearly separable?

Slide Credit: Carlos Guestrin

What if the data is not linearly separable?

ľ

$$\begin{array}{ll} \min \mathsf{inimize}_{\mathbf{w},b} & \mathbf{w}.\mathbf{w} \\ \left(\mathbf{w}.\mathbf{x}_j + b\right) y_j \geq 1 & , \forall j \end{array}$$

- Minimize w.w and number of training mistakes
 - 0/1 loss
 - Slack penalty C
 - Not QP anymore
 - Also doesn't distinguish near misses and really bad mistakes

Slack variables – Hinge loss

$$\begin{array}{ll} \text{minimize}_{\mathbf{w},b} & \mathbf{w}.\mathbf{w} + C\sum_{j}\xi_{j} \\ \left(\mathbf{w}.\mathbf{x}_{j} + b\right)y_{j} \geq \mathbf{1} - \xi_{j}, \ \forall j \\ & \xi_{j} \geq \mathbf{0}, \ \forall j \end{array}$$

- If margin >= 1, don't care
- If margin < 1, pay linear penalty

Soft Margin SVM

- Effect of C
 - Matlab demo by Andrea Vedaldi

SVMs and logistic regression?

SVM:

 $\begin{array}{ll} \text{minimize}_{\mathbf{w},b} & \mathbf{w}.\mathbf{w} + C\sum_{j}\xi_{j} \\ \left(\mathbf{w}.\mathbf{x}_{j} + b\right)y_{j} \geq \mathbf{1} - \xi_{j}, \ \forall j \\ & \xi_{j} \geq \mathbf{0}, \ \forall j \end{array}$

Logistic regression: $P(Y = 1 | x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)}}$

Log loss:

$$-\ln P(Y = 1 \mid x, \mathbf{w}) = \ln (1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)})$$

Harder 1-dimensional dataset

Harder 1-dimensional dataset

Harder 1-dimensional dataset

Does this always work?

• In a way, yes

Lemma

Let $(x_i)_{i=1,...,n}$ with $x_i \neq x_j$ for $i \neq j$. Let $\varphi : \mathbb{R}^k \to \mathbb{R}^m$ be a feature map. If the set $\varphi(x_i)_{i=1,...,n}$ is linearly independent, then the points $\varphi(x_i)_{i=1,...,n}$ are linearly separable.

Lemma

If we choose m > n large enough, we can always find a map φ .

Caveat

Caveat: We can separate any set, not just one with "reasonable" y_i :

There is a fixed feature map $\varphi : \mathbb{R}^2 \to \mathbb{R}^{20001}$ such that – no matter how we label them – there is always a hyperplane classifier that has 0 training error.

Kernel Trick

- One of the most interesting and exciting advancement in the last 2 decades of machine learning
 - The "kernel trick"
 - High dimensional feature spaces at no extra cost!
- But first, a detour
 - Constrained optimization!