ECE 5984: Introduction to Machine Learning

Topics:

- Classification: Logistic Regression
- NB & LR connections

Readings: Barber 17.4

Dhruv Batra Virginia Tech

Administrativia

- HW2
 - Due: Friday 03/06, 03/15, 11:55pm
 - Implement linear regression, Naïve Bayes, Logistic Regression
- Need a couple of catch-up lectures
 - How about 4-6pm?

Recap of last time

Naïve Bayes (your first probabilistic classifier)

Classification

- Learn: h: $X \mapsto Y$
 - X features
 - Y target classes
- Suppose you know P(Y|X) exactly, how should you classify?
 - Bayes classifier:

Why?

Error Decomposition

- Approximation/Modeling Error
 - You approximated reality with model
- Estimation Error
 - You tried to learn model with finite data
- Optimization Error
 - You were lazy and couldn't/didn't optimize to completion
- Bayes Error
 - Reality just sucks
 - http://psych.hanover.edu/JavaTest/SDT/ROC.html

Generative vs. Discriminative

Using Bayes rule, optimal classifier

$$h^*(\mathbf{x}) = \underset{c}{\operatorname{argmax}} \{ \log p(\mathbf{x}|y=c) + \log p(y=c) \}$$

- Generative Approach (Naïve Bayes)
 - Estimate p(x|y) and p(y)
 - Use Bayes Rule to predict y
- Discriminative Approach
 - Estimate p(y|x) directly (Logistic Regression)
 - Learn "discriminant" function h(x) (Support Vector Machine)

The Naïve Bayes assumption

- Naïve Bayes assumption:
 - Features are independent given class:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$

= $P(X_1|Y)P(X_2|Y)$

– More generally:

$$P(X_1...X_d|Y) = \prod_i P(X_i|Y)$$

- How many parameters now?
 - Suppose X is composed of d binary features

Generative vs. Discriminative

Using Bayes rule, optimal classifier

$$h^*(\mathbf{x}) = \underset{c}{\operatorname{argmax}} \{ \log p(\mathbf{x}|y=c) + \log p(y=c) \}$$

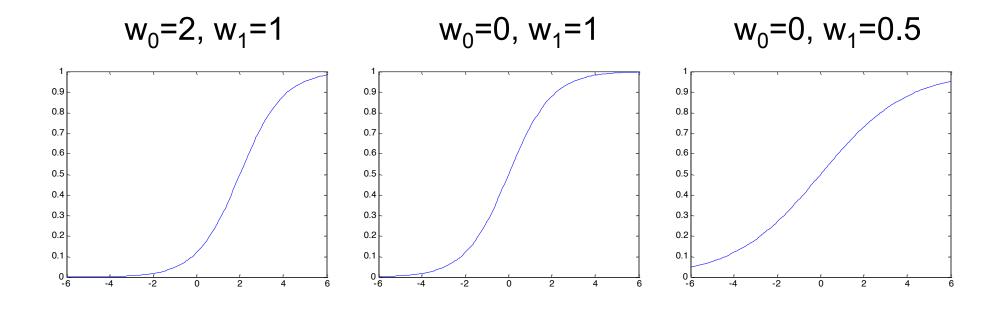
- Generative Approach (Naïve Bayes)
 - Estimate p(x|y) and p(y)
 - Use Bayes Rule to predict y
- Discriminative Approach
 - Estimate p(y|x) directly (Logistic Regression)
 - Learn "discriminant" function h(x) (Support Vector Machine)

Today: Logistic Regression

- Main idea
 - Think about a 2 class problem {0,1}
 - Can we regress to P(Y=1 | X=x)?
- Meet the Logistic or Sigmoid function
 - Crunches real numbers down to 0-1
- Model
 - In regression: $y \sim N(w'x, \lambda^2)$
 - Logistic Regression: $y \sim Bernoulli(\sigma(w'x))$

Understanding the sigmoid

$$\sigma(w_0 + \sum_{i} w_i x_i) = \frac{1}{1 + e^{-w_0 - \sum_{i} w_i x_i}}$$



Slide Credit: Carlos Guestrin

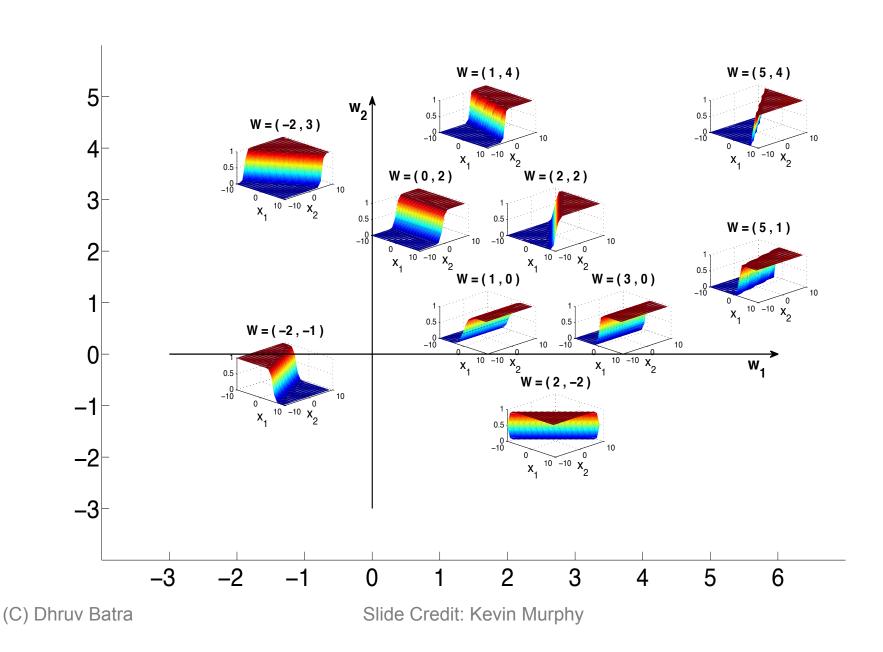
11

(C) Dhruv Batra

Logistic Regression – a Linear classifier

- Demo
 - http://www.cs.technion.ac.il/~rani/LocBoost/

Visualization



13

Expressing Conditional Log Likelihood

$$l(\mathbf{w}) \equiv \sum_{j} \ln P(y^{j}|\mathbf{x}^{j},\mathbf{w})$$

$$P(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$l(\mathbf{w}) = \sum_{j} y^{j} \ln P(y^{j} = 1 | \mathbf{x}^{j}, \mathbf{w}) + (1 - y^{j}) \ln P(y^{j} = 0 | \mathbf{x}^{j}, \mathbf{w})$$

Maximizing Conditional Log Likelihood

$$l(\mathbf{w}) \equiv \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})$$

$$= \sum_{j} y^{j} (w_{0} + \sum_{i} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i} w_{i} x_{i}^{j}))$$

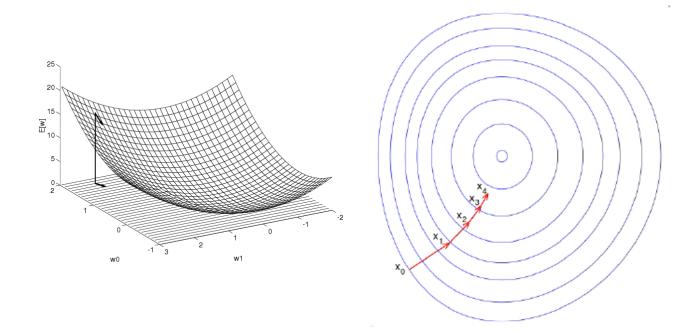
Bad news: no closed-form solution to maximize *I*(w)

Good news: I(w) is concave function of w!

Gradient Descent

- Choose a starting point w_0 when t=0 and the desired tolerance ϵ .
- Repeat until $\|\nabla f(w_t)\| \le \epsilon$ is satisfied

$$w_{t+1} = w_t - \eta_t \nabla f(w_t)$$



Careful about step-size

Quadratic bowl



$$\eta = .1$$

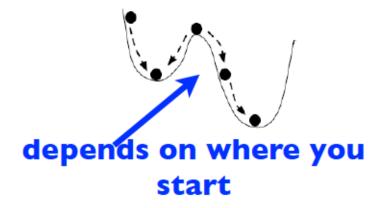
$$\eta = .3$$

Local vs. global optimal

For general objective functions f(x)

We get local optimum

Consider rolling a ball on a hill



When does it work?

(C) Dhruv Batra

Local vs. global optimal

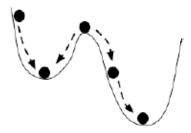
In practice, convexity can be a very nice thing

In general, convex problems -- minimizing a convex function over a convex set -- can be solved numerically very efficiently

This is advantageous especially if stationary points cannot be found analytically in closed-form

Convex: unique global optimum

nonconvex: local optimum



Convex Functions

• $f:\Re^d \to \Re$ is a convex function if domain of f is a convex set and for all $\lambda \in [0,1]$

$$f(\lambda w_1 + (1 - \lambda)w_2) \le \lambda f(w_1) + (1 - \lambda)f(w_2)$$

Multivariate functions

Definition

 $f(oldsymbol{x})$ is convex if

$$f(\lambda \boldsymbol{a} + (1 - \lambda)\boldsymbol{b}) \le \lambda f(\boldsymbol{a}) + (1 - \lambda)f(\boldsymbol{b})$$

How to determine convexity in this case?

Second-order derivative becomes Hessian matrix

$$\boldsymbol{H} = \begin{bmatrix} \frac{\partial^2 f(\boldsymbol{x})}{\partial x_1^2} & \frac{\partial^2 f(\boldsymbol{x})}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(\boldsymbol{x})}{\partial x_1 \partial x_D} \\ \frac{\partial^2 f(\boldsymbol{x})}{\partial x_1 \partial x_2} & \frac{\partial^2 f(\boldsymbol{x})}{\partial x_2^2} & \cdots & \frac{\partial^2 f(\boldsymbol{x})}{\partial x_2 \partial x_D} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial^2 f(\boldsymbol{x})}{\partial x_1 \partial x_D} & \frac{\partial^2 f(\boldsymbol{x})}{\partial x_2 \partial x_D} & \cdots & \frac{\partial^2 f(\boldsymbol{x})}{\partial x_2^2} \end{bmatrix}$$

Convexity for multivariate function

If the Hessian is positive semidefinite, then the function is convex

$$f(\boldsymbol{x}) = \frac{x_1^2}{x_2}$$

$$\boldsymbol{H} = \begin{bmatrix} \frac{2}{x_2} & -\frac{2x_1}{x_2^2} \\ -\frac{2x_1}{x_2^2} & \frac{2x_1^2}{x_2^3} \end{bmatrix}$$

$$\boldsymbol{H} = \begin{bmatrix} \frac{2}{x_2} & -\frac{2x_1}{x_2^2} \\ -\frac{2x_1}{x_2^2} & \frac{2x_1^2}{x_2^3} \end{bmatrix} = \frac{2}{x_2^3} \begin{bmatrix} x_2^2 & -x_1x_2 \\ -x_1x_2 & x_1^2 \end{bmatrix}$$

Verify that the Hessian is positive definite

Assume x2 is positive, then

For any vector

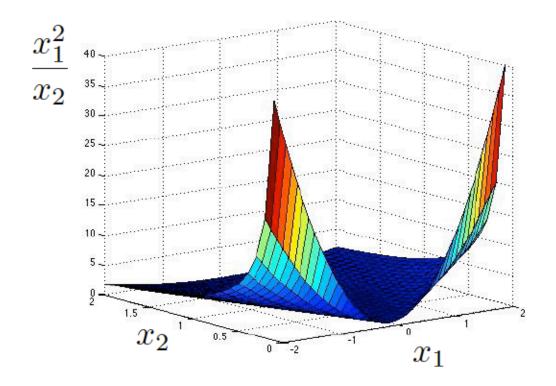
$$oldsymbol{v} = \left[egin{array}{c} a \ b \end{array}
ight]$$

$$\mathbf{v}^{\mathrm{T}}\mathbf{H}\mathbf{v} = \mathbf{v}^{\mathrm{T}} \frac{2}{x_{2}^{3}} \begin{bmatrix} x_{2}^{2} & -x_{1}x_{2} \\ -x_{1}x_{2} & x_{1}^{2} \end{bmatrix} \mathbf{v}$$

$$= \frac{2}{x_{2}^{3}} (a^{2}x_{2}^{2} - 2abx_{1}x_{2} + b^{2}x_{1}^{2})$$

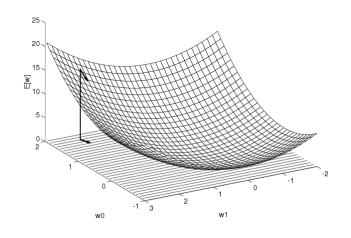
$$= \frac{2}{x_{2}^{3}} (ax_{2} - bx_{1})^{2} \ge 0$$

What does this function look like?



Optimizing concave function – Gradient ascent

- Conditional likelihood for Logistic Regression is concave
 - → Find optimum with gradient ascent



Gradient:
$$\nabla_{\mathbf{w}} l(\mathbf{w}) = [\frac{\partial l(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial w_n}]'$$

Update rule:
$$\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} l(\mathbf{w})$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i}$$

Maximize Conditional Log Likelihood: Gradient ascent

$$l(\mathbf{w}) = \sum_{j} y^{j}(w_{0} + \sum_{i}^{d} w_{i}x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{d} w_{i}x_{i}^{j}))$$

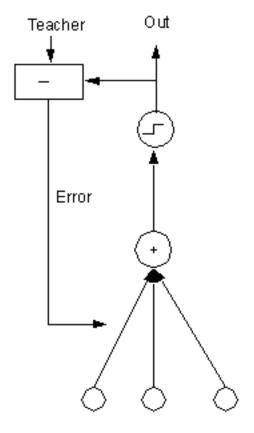
Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ε

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})]$$

For i=1,...,n,
$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})]$$

repeat



Perceptron Learning

(C) Dhruv Batra

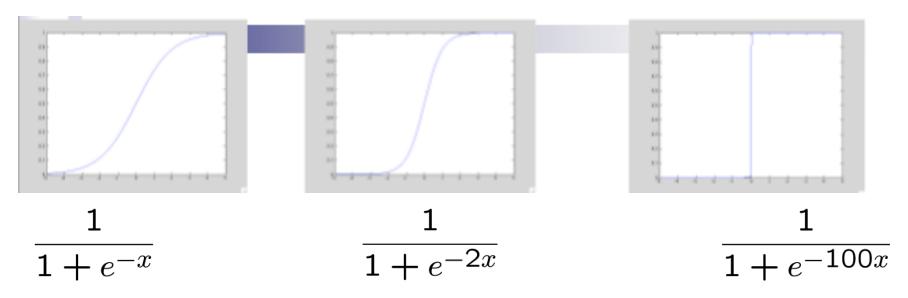
That's all M(C)LE. How about M(C)AP?

$$p(\mathbf{w} \mid Y, \mathbf{X}) \propto P(Y \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})$$

- One common approach is to define priors on w
 - Normal distribution, zero mean, identity covariance
 - "Pushes" parameters towards zero
- Corresponds to Regularization
 - Helps avoid very large weights and overfitting
 - More on this later in the semester
- MAP estimate

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^{N} P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

Large parameters → Overfitting



- If data is linearly separable, weights go to infinity
- Leads to overfitting

· Penalizing high weights can prevent overfitting

Gradient of M(C)AP

$$\frac{\partial}{\partial w_i} \ln \left[p(\mathbf{w}) \prod_{j=1}^N P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$p(\mathbf{w}) = \prod_{i} \frac{1}{\kappa \sqrt{2\pi}} e^{\frac{-w_i^2}{2\kappa^2}}$$

MLE vs MAP

Maximum conditional likelihood estimate

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[\prod_{j=1}^N P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \widehat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})]$$

Maximum conditional a posteriori estimate

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^{N} P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})] \right\}$$

HW2 Tips

- Naïve Bayes
 - Train_NB
 - Implement "factor_tables" -- |X_i| x |Y| matrices
 - Prior |Y| x 1 vector
 - Fill entries by counting + smoothing
 - Test NB
 - argmax_y P(Y=y) P(X_i=x_i)...
 - TIP: work in log domain
- Logistic Regression
 - Use small step-size at first
 - Make sure you maximize log-likelihood not minimize it
 - Sanity check: plot objective

Finishing up: Connections between NB & LR

Logistic regression vs Naïve Bayes

- Consider learning f: X → Y, where
 - X is a vector of real-valued features, <X1 ... Xd>
 - Y is boolean
- Gaussian Naïve Bayes classifier
 - assume all X_i are conditionally independent given Y
 - model P(X_i | Y = k) as Gaussian N(μ_{ik} , σ_i)
 - model P(Y) as Bernoulli(θ ,1- θ)
- What does that imply about the form of P(Y|X)?

$$P(Y = 1 \mid \mathbf{X} = \mathbf{x}) = \frac{1}{1 + exp(-w_0 - \sum_i w_i x_i)}$$

Derive form for P(Y|X) for continuous X_i

$$P(Y = 1|X) = \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}$$

$$= \frac{1}{1 + \frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)}}$$

$$= \frac{1}{1 + \exp(\ln \frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)})}$$

$$= \frac{1}{1 + \exp(\ln \frac{1 - \theta}{\theta}) + \sum_{i} \ln \frac{P(X_{i}|Y = 0)}{P(X_{i}|Y = 1)})}$$

Ratio of class-conditional probabilities

$$\ln \frac{P(X_i|Y=0)}{P(X_i|Y=1)}$$

$$P(X_i = x \mid Y = y_k) = \frac{1}{\sigma_i \sqrt{2\pi}} e^{\frac{-(x - \mu_{ik})^2}{2\sigma_i^2}}$$

Derive form for P(Y|X) for continuous X_i

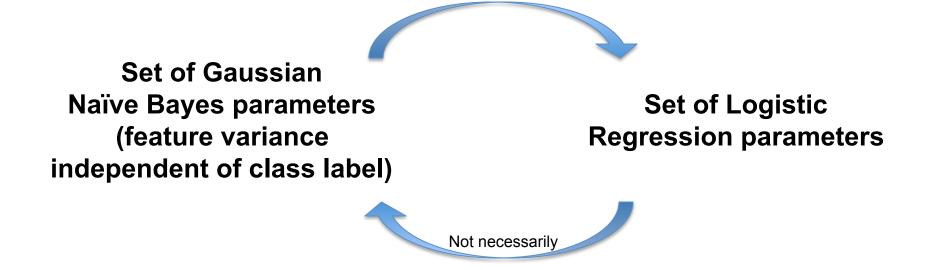
$$P(Y = 1|X) = \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}$$

$$= \frac{1}{1 + \exp(\left(\ln\frac{1-\theta}{\theta}\right) + \sum_{i}\ln\frac{P(X_{i}|Y = 0)}{P(X_{i}|Y = 1)}\right)}$$

$$\sum_{i} \left(\frac{\mu_{i0} - \mu_{i1}}{\sigma_{i}^{2}}X_{i} + \frac{\mu_{i1}^{2} - \mu_{i0}^{2}}{2\sigma_{i}^{2}}\right)$$

$$P(Y = 1 \mid \mathbf{X} = \mathbf{x}) = \frac{1}{1 + \exp(-w_{0} - \sum_{i} w_{i}x_{i})}$$

Gaussian Naïve Bayes vs Logistic Regression



- Representation equivalence
 - But only in a special case!!! (GNB with class-independent variances)
- But what's the difference???
- LR makes no assumptions about P(X|Y) in learning!!!
- Loss function!!!
 - Optimize different functions → Obtain different solutions

Naïve Bayes vs Logistic Regression

Consider Y boolean, Xi continuous, X=<X1 ... Xd>

- Number of parameters:
 - NB: 4d +1 (or 3d+1)
 - LR: d+1
- Estimation method:
 - NB parameter estimates are uncoupled
 - LR parameter estimates are coupled

G. Naïve Bayes vs. Logistic Regression 1

[Ng & Jordan, 2002]

- Generative and Discriminative classifiers
- Asymptotic comparison
 (# training examples → infinity)
 - when model correct
 - GNB (with class independent variances) and LR produce identical classifiers
 - when model incorrect
 - LR is less biased does not assume conditional independence
 - therefore LR expected to outperform GNB

G. Naïve Bayes vs. Logistic Regression 2

[Ng & Jordan, 2002]

- Generative and Discriminative classifiers
- Non-asymptotic analysis
 - convergence rate of parameter estimates,d = # of attributes in X
 - Size of training data to get close to infinite data solution
 - GNB needs O(log d) samples
 - LR needs O(d) samples
 - GNB converges more quickly to its (perhaps less helpful) asymptotic estimates

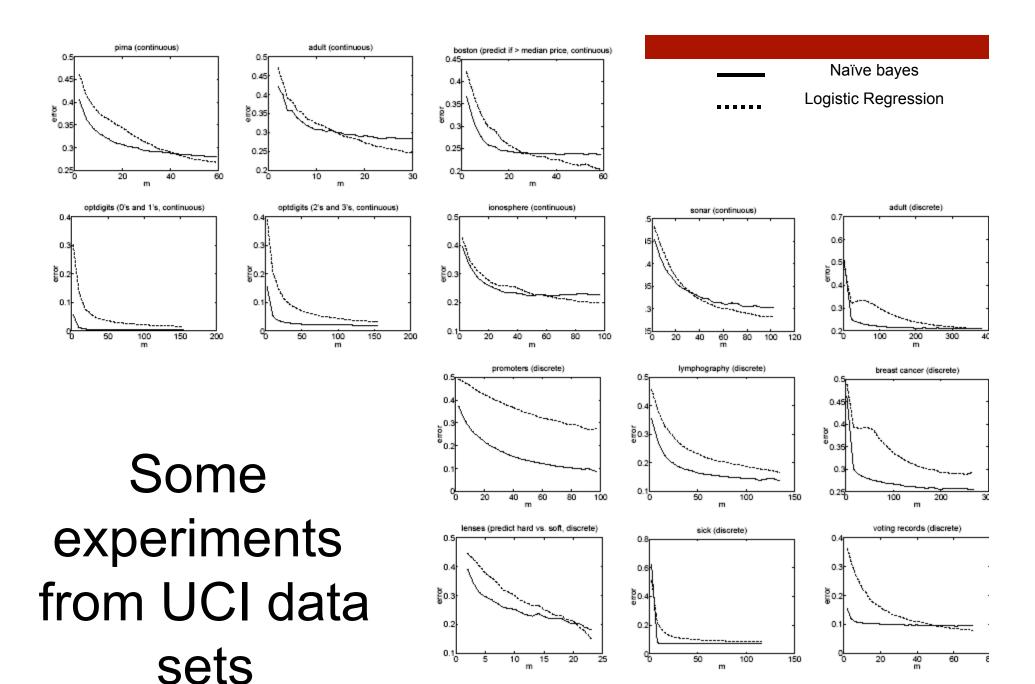


Figure 1: Results of 15 experiments on datasets from the UCI Machine Learnin repository. Plots are of generalization error vs. m (averaged over 1000 randor train/test splits). Dashed line is logistic regression; solid line is naive Bayes.

What you should know about LR

- Gaussian Naïve Bayes with class-independent variances representationally equivalent to LR
 - Solution differs because of objective (loss) function
- In general, NB and LR make different assumptions
 - NB: Features independent given class assumption on P(X|Y)
 - LR: Functional form of P(Y|X), no assumption on P(X|Y)
- LR is a linear classifier
 - decision rule is a hyperplane
- LR optimized by conditional likelihood
 - no closed-form solution
 - Concave → global optimum with gradient ascent
 - Maximum conditional a posteriori corresponds to regularization
- Convergence rates
 - GNB (usually) needs less data
 - LR (usually) gets to better solutions in the limit