ECE 5984: Introduction to Machine Learning

Topics:

- (Finish) Model selection
- Error decomposition
 - Bias-Variance Tradeoff
- Classification: Naïve Bayes

Readings: Barber 17.1, 17.2, 10.1-10.3

Dhruv Batra Virginia Tech

Administrativia

- HW2
 - Due: Friday 03/06, 11:55pm
 - Implement linear regression, Naïve Bayes, Logistic Regression
- Need a couple of catch-up lectures
 - How about 4-6pm?

Administrativia

- Mid-term
 - When: March 18, class timing
 - Where: In class
 - Format: Pen-and-paper.
 - Open-book, open-notes, closed-internet.
 - No sharing.
 - What to expect: mix of
 - Multiple Choice or True/False questions
 - "Prove this statement"
 - "What would happen for this dataset?"
 - Material
 - Everything from beginning to class to (including) SVMs

Recap of last time

Regression

Polynomial regression

• Consider 1D for simplicity:

$$f(x; \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_m x^m.$$

• No longer linear in x – but still linear in \mathbf{w} !

Polynomial regression

• Consider 1D for simplicity:

$$f(x; \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_m x^m.$$

- No longer linear in x but still linear in \mathbf{w} !
- Define $\boldsymbol{\phi}(\mathbf{x}) = [1, x, x^2, \dots, x^m]^T$
- Then, $f(x; \mathbf{w}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x})$ and we are back to the familiar simple linear regression. The least squares solution:

$$\hat{\mathbf{w}} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}, \text{ where } \mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^m \\ 1 & x_2 & x_2^2 & \dots & x_2^m \\ \dots & \dots & \dots & \dots \\ 1 & x_N & x_N^2 & \dots & x_N^m \end{bmatrix}$$

General additive regression models

$$f(\mathbf{x};\mathbf{w}) = w_0 + w_1\phi_1(\mathbf{x}) + w_2\phi_2(\mathbf{x}) + \ldots + w_m\phi_m(\mathbf{x}),$$

• Still the same ML estimation technique applies:

$$\hat{\mathbf{w}} = \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

where \mathbf{X} is the *design matrix*

$$\begin{bmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \phi_2(\mathbf{x}_1) & \dots & \phi_m(\mathbf{x}_1) \end{bmatrix}$$
$$\begin{bmatrix} \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \phi_2(\mathbf{x}_2) & \dots & \phi_m(\mathbf{x}_2) \end{bmatrix}$$
$$\begin{bmatrix} \dots & \dots & \dots & \dots & \dots & \dots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \phi_2(\mathbf{x}_N) & \dots & \phi_m(\mathbf{x}_N) \end{bmatrix}$$

(for convenience we will denote $\phi_0(\mathbf{x}) \equiv 1$)

(C) Dhruv Batra

What you need to know

- Linear Regression
 - Model
 - Least Squares Objective
 - Connections to Max Likelihood with Gaussian Conditional
 - Robust regression with Laplacian Likelihood
 - Ridge Regression with priors
 - Polynomial and General Additive Regression

Plan for Today

- (Finish) Model Selection
 - Overfitting vs Underfitting
 - Bias-Variance trade-off
 - aka Modeling error vs Estimation error tradeoff
- Naïve Bayes

New Topic: Model Selection and Error Decomposition

Example for Regression

- Demo
 - <u>http://www.princeton.edu/~rkatzwer/PolynomialRegression/</u>
- How do we pick the hypothesis class?

Model Selection

- How do we pick the right model class?
- Similar questions
 - How do I pick magic hyper-parameters?
 - How do I do feature selection?

Errors

- Expected Loss/Error
- Training Loss/Error
- Validation Loss/Error
- Test Loss/Error
- Reporting Training Error (instead of Test) is CHEATING
- Optimizing parameters on Test Error is CHEATING

- The improved holdout method: *k*-fold *cross-validation*
 - Partition data into k roughly equal parts;
 - Train on all but *j*-th part, test on *j*-th part

- The improved holdout method: *k*-fold *cross-validation*
 - Partition data into k roughly equal parts;
 - Train on all but j-th part, test on j-th part

- The improved holdout method: *k*-fold *cross-validation*
 - Partition data into k roughly equal parts;
 - Train on all but *j*-th part, test on *j*-th part

- The improved holdout method: *k*-fold *cross-validation*
 - Partition data into k roughly equal parts;
 - Train on all but j-th part, test on j-th part

- The improved holdout method: *k*-fold *cross-validation*
 - Partition data into k roughly equal parts;
 - Train on all but *j*-th part, test on *j*-th part

• An extreme case: leave-one-out cross-validation

$$\hat{L}_{cv} = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i; \hat{\mathbf{w}}_{-i}))^2$$

where $\hat{\mathbf{w}}_{-i}$ is fit to all the data but the *i*-th example.

Typical Behavior

Accuracy

Overfitting

• **Overfitting:** a learning algorithm overfits the training data if it outputs a solution **w** when there exists another solution **w**' such that:

 $[\mathit{error}_{\mathit{train}}(w) < \mathit{error}_{\mathit{train}}(w')] \land [\mathit{error}_{\mathit{true}}(w') < \mathit{error}_{\mathit{true}}(w)]$

- Approximation/Modeling Error
 - You approximated reality with model
- Estimation Error
 - You tried to learn model with finite data
- Optimization Error
 - You were lazy and couldn't/didn't optimize to completion
- (Next time) Bayes Error
 Reality just sucks

Bias-Variance Tradeoff

- **Bias:** difference between what you expect to learn and truth
 - Measures how well you expect to represent true solution
 - Decreases with more complex model

- Variance: difference between what you expect to learn and what you learn from a from a particular dataset
 - Measures how sensitive learner is to specific dataset
 - Increases with more complex model

Bias-Variance Tradeoff

Matlab demo

Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
 - More complex class \rightarrow less bias
 - More complex class \rightarrow more variance

(C) Dhruv Batra

Linear regression

• Example: polynomial regression, true [from Bishop, Ch. 1]

• Value of the optimal (ML) regression coefficients:

	m=0	m=1	m=3	m=9
w_0^*	0.19	0.82	0.31	0.35
w_1^*		-1.27	7.99	232.37
w_2^*			-25.43	-5321.83
$w_3^{\tilde{*}}$			17.37	48568.31
$w_{4}^{\breve{*}}$				-231639.30
w_5^*				640042.26
$w_6^{\check{*}}$				-1061800.52
w_7^{*}				1042400.18
w_8^{*}				-557682.99
w_9°				125201.43

Learning Curves

- Error vs size of dataset
- On board
 - High-bias curves
 - High-variance curves

Debugging Machine Learning

- My algorithm does work
 - High test error
- What should I do?
 - More training data
 - Smaller set of features
 - Larger set of features
 - Lower regularization
 - Higher regularization

What you need to know

- Generalization Error Decomposition
 - Approximation, estimation, optimization, bayes error
 - For squared losses, bias-variance tradeoff
- Errors
 - Difference between train & test error & expected error
 - Cross-validation (and cross-val error)
 - NEVER EVER learn on test data
- Overfitting vs Underfitting

New Topic: Naïve Bayes (your first probabilistic classifier)

Classification

- Learn: $h: \mathbf{X} \mapsto Y$
 - X features
 - Y target classes
- Suppose you know P(Y|X) exactly, how should you classify?
 - Bayes classifier:

• Why?

Optimal classification

- **Theorem:** Bayes classifier h_{Bayes} is optimal!
 - That is $error_{true}(h_{Bayes})) \leq error_{true}(h), \ \forall h(\mathbf{x})$
- Proof:

$$p(error_h) = \int_x p(error_h|x)p(x)dx$$

Generative vs. Discriminative

• Using Bayes rule, optimal classifier

$$h^*(\mathbf{x}) = \operatorname*{argmax}_c \{ \log p(\mathbf{x}|y=c) + \log p(y=c) \}$$

- Generative Approach
 - Estimate p(x|y) and p(y)
 - Use Bayes Rule to predict y
- Discriminative Approach
 - Estimate p(y|x) directly OR
 - Learn "discriminant" function h(x)

Generative vs. Discriminative

- Generative Approach
 - Assume some functional form for P(X|Y), P(Y)
 - Estimate p(X|Y) and p(Y)
 - Use Bayes Rule to calculate P(Y| X=x)
 - Indirect computation of P(Y|X) through Bayes rule
 - But, can generate a sample, $P(X) = \sum_{y} P(y) P(X|y)$
- Discriminative Approach
 - Estimate p(y|x) directly OR
 - Learn "discriminant" function h(x)
 - Direct but cannot obtain a sample of the data, because P(X) is not available

Generative vs. Discriminative

- Generative:
 - Today: Naïve Bayes
- Discriminative:
 - Next: Logistic Regression
- NB & LR related to each other.

How hard is it to learn the optimal classifier?

- Categorical Data
- How do we represent these? How many parameters?
 - Class-Prior, P(Y):
 - Suppose Y is composed of *k* classes
 - Likelihood, P(**X**|Y):
 - Suppose **X** is composed of *d* binary features

• Complex model \rightarrow High variance with limited data!!!

Independence to the rescue

• Two variables are independent iff their joint factors:

$$p(x,y) = p(x)p(y)$$

• Two variables are conditionally independent given a third one if for all values of the conditioning variable, the resulting slice factors:

$$p(x, y|z) = p(x|z)p(y|z) \qquad \forall z$$

The Naïve Bayes assumption

- Naïve Bayes assumption:
 - Features are independent given class:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$

= $P(X_1|Y)P(X_2|Y)$

– More generally:

$$P(X_1...X_d|Y) = \prod_i P(X_i|Y)$$

- How many parameters now?
 - Suppose **X** is composed of *d* binary features

The Naïve Bayes Classifier

- Given:
 - Class-Prior P(Y)
 - d conditionally independent features X given the class Y
 - For each X_i , we have likelihood $P(X_i|Y)$
- Decision rule:

$$y^* = h_{NB}(\mathbf{x}) = \arg \max_{y} P(y) P(x_1, \dots, x_n \mid y)$$

=
$$\arg \max_{y} P(y) \prod_{i} P(x_i \mid y)$$

• If assumption holds, NB is optimal classifier!