ECE 5984: Introduction to
Machine Learning

Topics:
— (Finish) Model selection
— Error decomposition
— Bias-Variance Tradeoff
— Classification: Naive Bayes

Readings: Barber 17.1, 17.2, 10.1-10.3

Dhruv Batra
Virginia Tech
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Administrativia

e HW?2
— Due: Friday 03/06, 11:55pm

— Implement linear regression, Naive Bayes, Logistic
Regression

* Need a couple of catch-up lectures
— How about 4-6pm?
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Administrativia

* Mid-term
— When: March 18, class timing
— Where: In class

— Format: Pen-and-paper.

— Open-book, open-notes, closed-internet.
* No sharing.

— What to expect: mix of
» Multiple Choice or True/False questions
* “Prove this statement”
« “What would happen for this dataset?”

— Material
« Everything from beginning to class to (including) SVMs
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Recap of last time
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Regression
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Polynomial regression

@ Consider 1D for simplicity:

flz;w) = wo + wix + wox? + ...+ w,a™

@ No longer linear in x — but still linear in w!
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Polynomial regression

@ Consider 1D for simplicity:

f(z:w) = wo + wix + wox? + ...+ w,a™.

@ No longer linear in x — but still linear in w!
o Define p(x) = [1,z,22,..., 2™

o Then, f(xz;w) = w! ¢(x) and we are back to the familiar simple
linear regression. The least squares solution:

1z 2P "
2 m

. —1 1 =x €T T
W = (XTX) X'y, where X = 2 2 2
1 = 2 m
i N Ty LN
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General additive regression models

f(x:w) = wo+ wi101(X) + wa2d2(X) + ... + Wi dm(X),

@ Still the same ML estimation technique applies:
w o= (XTX)"' xTy

where X is the design matrix

Po(x1)  ¢1(x1) P2(x1) ... Om(x1)
do(x2)  @1(x2) O2(x2) ... Op(x2)
do(xn) S10xy) (k) .. bmlxn)

(for convenience we will denote ¢p(x) = 1)
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What you need to know

« Linear Regression
— Model
— Least Squares Objective
— Connections to Max Likelihood with Gaussian Conditional
— Robust regression with Laplacian Likelihood
— Ridge Regression with priors
— Polynomial and General Additive Regression
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Plan for Today

* (Finish) Model Selection
— Overfitting vs Underfitting

— Bias-Variance trade-off
» aka Modeling error vs Estimation error tradeoff

* Naive Bayes
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New Topic: Model Selection and
Error Decomposition
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Example for Regression

« Demo
— http://www.princeton.edu/~rkatzwer/PolynomialRegression/

 How do we pick the hypothesis class?
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Model Selection

 How do we pick the right model class?

« Similar questions
— How do | pick magic hyper-parameters?
— How do | do feature selection?
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Errors

» Expected Loss/Error
* Training Loss/Error
« Validation Loss/Error

e Test Loss/Error

* Reporting Training Error (instead of Test) is
CHEATING

* Optimizing parameters on Test Error is CHEATING
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Cross-validation

@ The improved holdout method: k-fold cross-validation

e Partition data into k& roughly equal parts;
e Train on all but j-th part, test on j-th part

X1 XN
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Cross-validation

@ [he improved holdout method: k-fold cross-validation

e Partition data into k roughly equal parts;
e Train on all but j-th part, test on j-th part
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Cross-validation

@ [he improved holdout method: k-fold cross-validation

e Partition data into k roughly equal parts;
e T[rain on all but j-th part, test on j-th part

X1 XN

@ An extreme case: leave-one-out cross-validation

cv — ]VZ XZ, —i))2

where w_; is fit to all the data but the i-th example.
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Typical Behavior

Accuracy

100%
Asymptotic training acCcuracy [~ =77 T TTTITITTITTTosim s sssn s s

training
Best test accuracy

: — : Training effort
Optimal stopping point
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Overfitting

« Overfitting: a learning algorithm overfits the training
data if it outputs a solution w when there exists
another solution w’ such that:

[errortmm(w) < errortrain(wl)]/\[errortrue(wl) < BTTOTtTue(W)]
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Error Decomposition

Reality

horse Perso
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Error Decomposition

\
&€

«®_® Reality

Oée

Highgé

Potentials horse _Perso
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Error Decomposition

Approximation/Modeling Error
— You approximated reality with model

Estimation Error
— You tried to learn model with finite data

Optimization Error
— You were lazy and couldn’t/didn’t optimize to completion

(Next time) Bayes Error
— Reality just sucks
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Bias-Variance Tradeoff

« Bias: difference between what you expect to learn
and truth
— Measures how well you expect to represent true solution
— Decreases with more complex model

« Variance: difference between what you expect to
learn and what you learn from a from a particular
dataset

— Measures how sensitive learner is to specific dataset
— Increases with more complex model
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Bias-Variance Tradeoff

 Matlab demo
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Bias-Variance Tradeoff

« Choice of hypothesis class introduces learning bias
— More complex class — less bias

— More complex class — more variance

If'"\"\._,,»' "gll ,“'I \ ‘ / H"ﬁh II'II \
I i IR

ﬂL
] v \
|

[
| )
Select points by clicking on the graph or press Example

L
Degree of polynomial:

v @ FitYtox
' O FitXtoY

Select points by clicking on the graph or press Example Select points by clicking on the graph or press Example
Degree of polynomial: 13 @ FitYtoX

Degree of polynomial:
" FitXtoY
Calculate | View Polynomial | Reset|

13 v & FitYto X
" FitXtoY
Calculatel ViewPonnomiaI| Reset|
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Linear regression

@ Example: polynomial regression, true [from Bishop, Ch. 1]

1t 00 M=1 1t

-1 S — B -1t

@ Value of the optimal (ML) regression coefficients:

m =0 m =1 m =3 m=9
w() 0.19 0.82 0.31 0.35
wy -1.27 7.99 232.37
wo -25.43 -56321.83
wa 17.37 48568.31
wy -231639.30
wg 640042.26
we -1061800.52
we 1042400.18
wg -557682.99
wq 125201.43
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Learning Curves

 Error vs size of dataset

e On board

— High-bias curves
— High-variance curves
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Debugging Machine Learning

« My algorithm does work
— High test error

 What should | do?

— More training data

— Smaller set of features
— Larger set of features
— Lower regularization
— Higher regularization
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What you need to know

« (Generalization Error Decomposition
— Approximation, estimation, optimization, bayes error
— For squared losses, bias-variance tradeoff

 Errors
— Difference between train & test error & expected error

— Cross-validation (and cross-val error)
— NEVER EVER learn on test data

« Qverfitting vs Underfitting
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New Topic:
Naive Bayes
(your first probabilistic classifier)

X o> Classification oy Discrete

(C) Dhruv Batra

33



-]
Classification

e Learn: h:X— Y
— X — features
— Y —target classes

« Suppose you know P(Y|X) exactly, how should you
classify?
— Bayes classifier:

« Why?
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Optimal classification

 Theorem: Bayes classifier h IS optimal!

Bayes

~ Thatis errortrue(hBayes>) < errortrye(h), Vh(x)

 Proof:

p(errory) = [, p(errory|z)p(x)dx
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Generative vs. Discriminative

@ Using Bayes rule, optimal classifier

h*(x) = argmax{logp(x|y = ¢) + logp(y = ¢)}

« (Generative Approach

— Estimate p(x]y) and p(y)
— Use Bayes Rule to predict y

« Discriminative Approach
— Estimate p(y|x) directly OR
— Learn “discriminant” function h(x)
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Generative vs. Discriminative

« (Generative Approach
— Assume some functional form for P(X|Y), P(Y)
— Estimate p(X]Y) and p(Y)
— Use Bayes Rule to calculate P(Y| X=x)
— Indirect computation of P(Y|X) through Bayes rule
— But, can generate a sample, P(X) = >, P(y) P(X|y)

« Discriminative Approach

— Estimate p(y|x) directly OR
— Learn “discriminant” function h(x)

— Direct but cannot obtain a sample of the data, because P(X)
is not available
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Generative vs. Discriminative

* Generative:
— Today: Naive Bayes

* Discriminative:
— Next: Logistic Regression

* NB & LR related to each other.
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How hard is it to learn the optimal classifier?

« Categorical Data

 How do we represent these”? How many parameters?
— Class-Prior, P(Y):
» Suppose Y is composed of k classes

— Likelihood, P(X|Y):
« Suppose X is composed of d binary features

« Complex model - High variance with limited data!!!
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Independence to the rescue

e Two variables are independent iff their joint factors:

p(x,y) = p(x)p(y)

p(=.y)

p(x)

p(y)

¢ Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(z,y|z) = plz|2)plylz)  Vz
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The Nailve Bayes assumption

« Nalve Bayes assumption:
— Features are independent given class:

P(X1,X2lY) = P(X1]|X2,Y)P(X2]Y)
= P(X1|Y)P(X5|Y)

— More generally:

P(X1...X4lY) = HP(Xi\Y)

* How many parameters now?
» Suppose X is composed of d binary features
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The Nailve Bayes Classifier

+ Given:
— Class-Prior P(Y)
— d conditionally independent features X given the class Y
— For each X, we have likelihood P(X]Y)

 Decision rule:

y* — hNB(X) — dfd manP(y)P(SE]_, ey I | y)
= arg m;xP(y)HP(atily)
1

 |f assumption holds, NB is optimal classifier!
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