

Action Recognition

The Bradley Department of Electrical and Computer Engineering

-Yingzhou Lu

What is action recognition?

- Input: video/image
- Output: the "action label"

Why perform action recognition?

Surveillance footage

User-interfaces

Automatic video organization / tagging

Search-by-video?

Example Applications

Automatic Tele-Rehabilitation

Example Applications

credit: Bingbing Ni

Example Applications

credit: Bingbing Ni

Demo

Why Action Recognition Is Challenging?

Different scales

 People may appear at different scales in different videos, yet perform the same action.

Movement of the camera

- The camera may be a handheld camera, and the person holding it can cause it to shake.
- Camera may be mounted on something that moves.

Why Action Recognition Is Challenging?

- Occlusions
 - Action may not be fully visible

Why Action Recognition Is Challenging?

- Background "clutter"
 - Other objects/humans present in the video frame.
- Human variation
 - Humans are of different sizes/shapes
- Action variation
 - Different people perform different actions in different ways.
- Etc...

Design good features for action representation

Example features

"space-time interest points"

"motion history images"

"dense trajectories"

"body joints"

Paper Overview

- Recognizing Human Actions: A Local SVM Approach - Christian Schuldt, Ivan Laptev and Barbara Caputo (ICPR 2004)
 - Use local space-time features to represent video sequences that contain actions.
 - Classification is done via an SVM. Results are also computed for KNN for comparison.

Space-time local features

No global assumptions \Rightarrow

Consider local spatio-temporal neighborhoods

Local Space-time features

Figure 1. Local space-time features detected for a walking pattern: (a) 3-D plot of a spatio-temporal leg motion (up side down) and corresponding features (in black); (b) Features overlaid on selected frames of a sequence.

Figure from Schuldt et al.

Space-Time Interest Points: Detection

What neighborhoods to consider?

Definitions:

$$f\colon \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$$
 Original image sequence $g(x,y,t;\Sigma)$ Space-time Gaussian with covariance $\Sigma \in \operatorname{SPSD}(3)$ $L_{\xi}(\cdot;\Sigma) = f(\cdot) * g_{\xi}(\cdot;\Sigma)$ Gaussian derivative of f $\nabla L = (L_x,L_y,L_t)^T$ Space-time gradient $\mu(\cdot;\Sigma) = \nabla L(\cdot;\Sigma)(\nabla L(\cdot;\Sigma))^T * g(\cdot;s\Sigma) = \begin{pmatrix} \mu_{xx} & \mu_{xy} & \mu_{xt} \\ \mu_{xy} & \mu_{yy} & \mu_{yt} \\ \mu_{xt} & \mu_{yt} & \mu_{tt} \end{pmatrix}$ Second-moment matrix

Representation of Features

construct its scale-space representation using Gaussian convolution kernel g

$$L(\cdot, \sigma^2, \tau^2) = f * g(\cdot, \sigma^2, \tau^2)$$

 compute the second-moment matrix using spatiotemporal image gradients

$$\mu(\cdot; \sigma^2, \tau^2) = g(\cdot; s\sigma^2, s\tau^2) * (\nabla L(\nabla L)^T)$$

define positions of features by local maxima

$$H = \det(\mu) - k \operatorname{trace}^{3}(\mu)$$

Representation of Features

 Spatial-temporal "jets" (4th order) are computed at each feature center:

$$l = (L_x, L_y, L_t, L_{xx}, ..., L_{tttt})$$

- Using k-means clustering, a vocabulary consisting of words h_i is created from the jet descriptors.
- Finally, a given video is represented by a histogram of counts of occurrences of features corresponding to h_i in that video: $H = (h_1, ..., h_n)$

Recognition Methods

- 2 representations of data:
 - [1] Raw jet descriptors (LF) ("local feature" kernel)
 - Wallraven, Caputo, and Graf (2003)
 - [2] Histograms (HistLF) (X² kernel)
- 2 classification methods:
 - SVM
 - K Nearest Neighbor

Design good classifiers

Example: Support Vector Machine (SVM) classifier

The Dataset

Figure from Schuldt et al.

The Dataset

- Video dataset with a few thousand instances.
 - 25 people each:
 - perform 6 different actions
 - Walking, jogging, running, boxing, hand waving, clapping
 - in 4 different scenarios
 - Outdoors, outdoors w/scale variation, outdoors w/different clothes, indoors
 - (several times)
- Backgrounds are mostly free of clutter.
- Only one person performing a single action per video.

credit: Benzaid

Results

Figure from Schuldt et al.

Results

- Experimental results:
 - Local Feature (jets) + SVM performs the best
 - SVM outperforms NN
 - HistLF (histogram of jets) is slightly better than HistSTG (histogram of spatio-temporal gradients)
- Average classification accuracy on all scenarios = 71.72%

Analysis

- Some categories can be confused with others (running vs. jogging vs. walking / waving vs. boxing) due to different ways that people perform these tasks.
- Local Features (raw jet descriptors without histograms) combined with SVMs was the best-performing technique for all tested scenarios.

Paper Overview

 Two-Stream Convolutional Networks for Action Recognition in Videos (NIPS 2014)

- propose a two-stream ConvNet architecture Two-stream architecture for video classification
 - Temporal stream motion recognition ConvNet
 - Spatial stream appearance recognition ConvNet

Architecture

Convnet Layer Conviguration

conv1	conv2	conv3	conv4	conv5	full6	full7	full8
7x7x96	5x5x256	3x3x512	3x3x512	3x3x512	4096	2048	softmax
stride 2	stride 2			pool 2x2	dropout	dropout	
norm.	pool 2x2						
pool 2x2							
-							

- 8 weight layers (5 convolutional and 3 fully-connected)
- used for both spatial & temporal streams

Spatial Stream

Predicts action from still images – image classification

- Input
 Individual RGB frames
- Training

Leverages large amounts of outside image data by pretraining on ILSVRC (1.2M images, 1000 classes)

Classification layer re-trained on video frames

Evaluation

Applied to 25 evenly sampled frames in each clip Resulting scores averaged

Optical Flow

- Displacement vector field between a pair of consecutive frames
- Each flow 2 channels: horizontal & vertical components
- Computed using [Brox et al., ECCV 2004]
 - based on generic assumptions of constancy and smoothness
 - pre-computed on GPU (17fps), JPEG-compressed
- Global (camera) motion compensated by mean flow subtraction

Temporal Stream

Predicts action from motion

Input

- Explicitly describes motion in video
- Stacked optical flow over several frames

Training

From scratch with high drop-out (90%)

Multi-task learning to reduce over-fitting

- Video datasets (UCF-101, HMDB-51) are small
- Merging datasets is problematic due to semantic overlap
- Multi-task learning: each dataset defines a separate task (loss)

Evaluation

Video action classification datasets

- UCF-101 (101 class, 13K videos)
- HMDB-51 (51 class, 6.8K videos)

Results

Table 3: Two-stream ConvNet accuracy on UCF-101 (split 1).

Spatial ConvNet	Temporal ConvNet	Fusion Method	Accuracy
Pre-trained + last layer	bi-directional	averaging	85.6%
Pre-trained + last layer	uni-directional	averaging	85.9%
Pre-trained + last layer	uni-directional, multi-task	averaging	86.2%
Pre-trained + last layer	uni-directional, multi-task	SVM	87.0%

Table 4: Mean accuracy (over three splits) on UCF-101 and HMDB-51.

Method	UCF-101	HMDB-51
Improved dense trajectories (IDT) [26, 27]	85.9%	57.2%
IDT with higher-dimensional encodings [20]	87.9%	61.1%
IDT with stacked Fisher encoding [21] (based on Deep Fisher Net [23])		66.8%
Spatio-temporal HMAX network [11, 16]		22.8%
"Slow fusion" spatio-temporal ConvNet [14]	65.4%	-
Spatial stream ConvNet	73.0%	40.5%
Temporal stream ConvNet	83.7%	54.6%
Two-stream model (fusion by averaging)	86.9%	58.0%
Two-stream model (fusion by SVM)	88.0%	59.4%

Conclusions

- From depth and color image sequences to multi-modal visual analytics
- Quality metrics for activity recognition tasks
- New features for depth images and for fusion
- Machine learning framework
- New applications

Next Milestone in Action Recognition?

- Will CNNs take over existing action recognition methods?
 - -What's a good network architecture?
 - -Where to get sufficient training data?

Input frames are fed into two separate streams of processing: a context stream that models low-resolution image and a fovea stream that processes high-resolution center crop. Both streams consist of alternating convolution (red), normalization (green) and pooling (blue) layers. Both streams converge to two fully connected layers (yellow).

[Karpathy et al. 2014]

Next Milestone in Action Recognition?

optic flow

Method	UCF101	HMDB51
Dense Traj. + IFV	87.9%	61.1%
Two Stream ConvNet	88.0%	59.4%

- Optical flow as input to deep network, i.e., ConvNet
- Spatial stream ConvNet captures shape information
- Temporal stream ConvNet captures motion information
- Achieve state-of-the-art accuracy