Action Recognition



Computer Vision
Jia-Bin Huang, Virginia Tech

This section: advanced topics

Convolutional neural networks in vision

Action recognition

Vision and Language

3D Scenes and Context

What is an action?

Action: a transition from one state to another

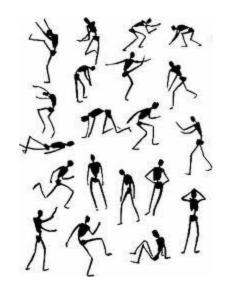
- Who is the actor?
- How is the state of the actor changing?
- What (if anything) is being acted on?
- How is that thing changing?
- What is the purpose of the action (if any)?

How do we represent actions?

Categories

Walking, hammering, dancing, skiing, sitting down, standing up, jumping

Poses



Nouns and Predicates

<man, swings, hammer> <man, hits, nail, w/ hammer>

What is the purpose of action recognition?

To describe

What is the purpose of action recognition?

To predict

What is the purpose of action recognition?

To understand the intention and motivationWhy are they doing that?

to sell ice cream

to commute to work

to answer emergency call

to win race

How can we identify actions?

Motion

Pose

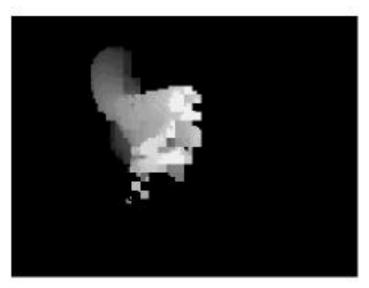
Held Objects

Nearby Objects

Representing Motion

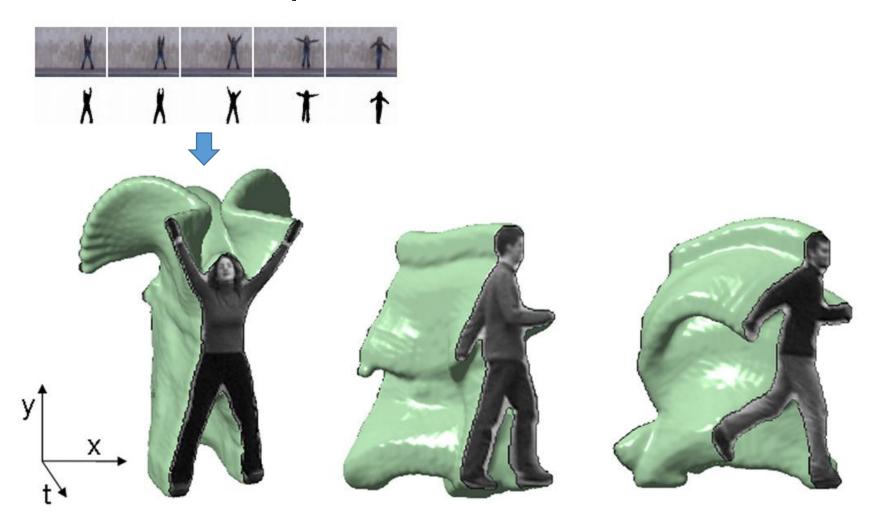
Optical Flow with Motion History

sit-down



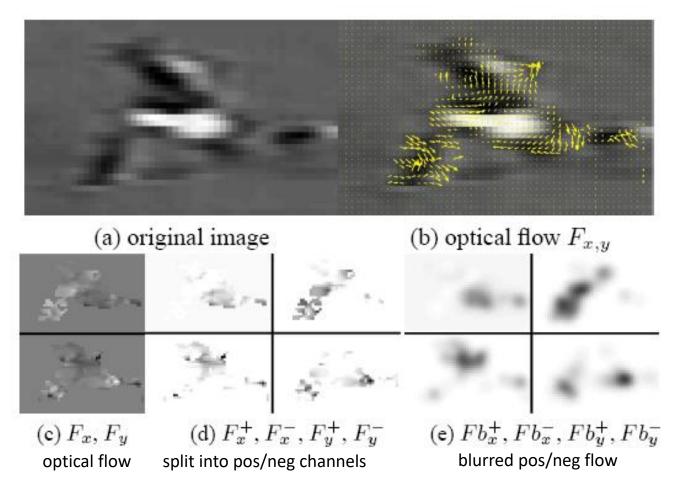
sit-down MHI

Representing Motion Space-Time Volumes

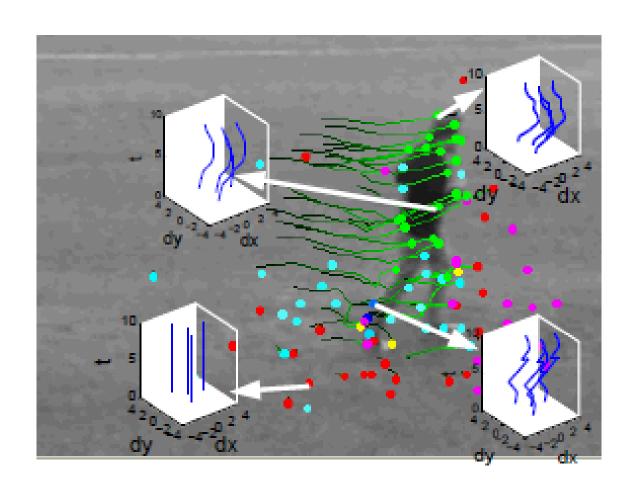


Representing Motion

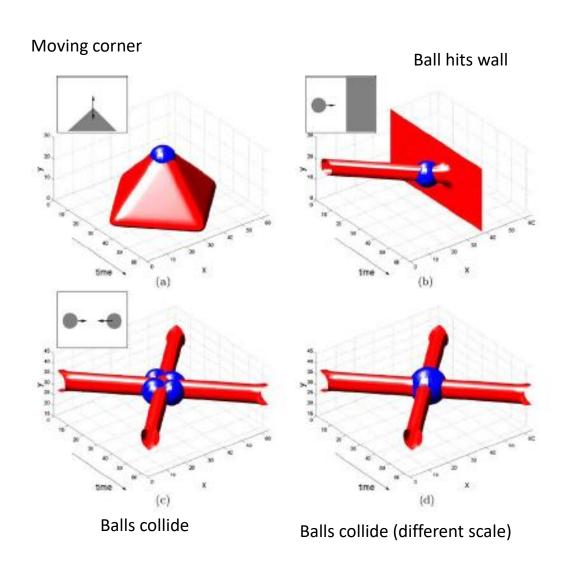
Optical Flow with Split Channels



Representing Motion Tracked Points

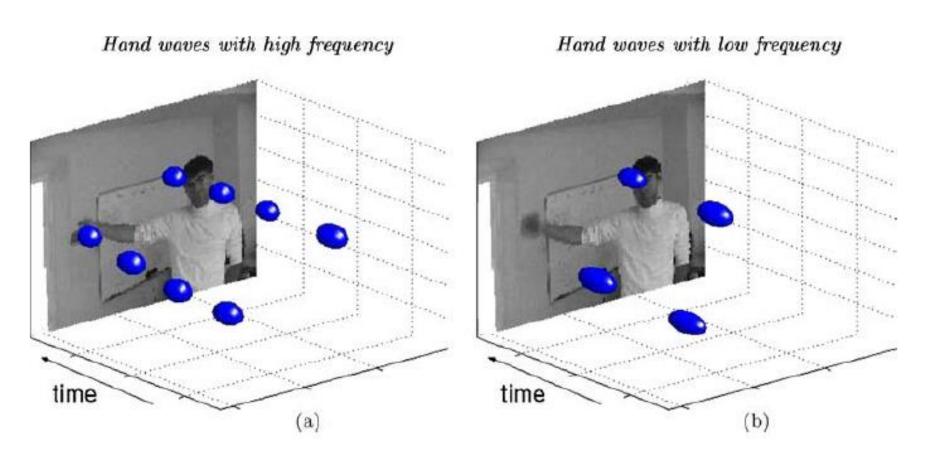


Representing Motion Space-Time Interest Points



Corner detectors in space-time

Representing Motion Space-Time Interest Points



Examples of Action Recognition Systems

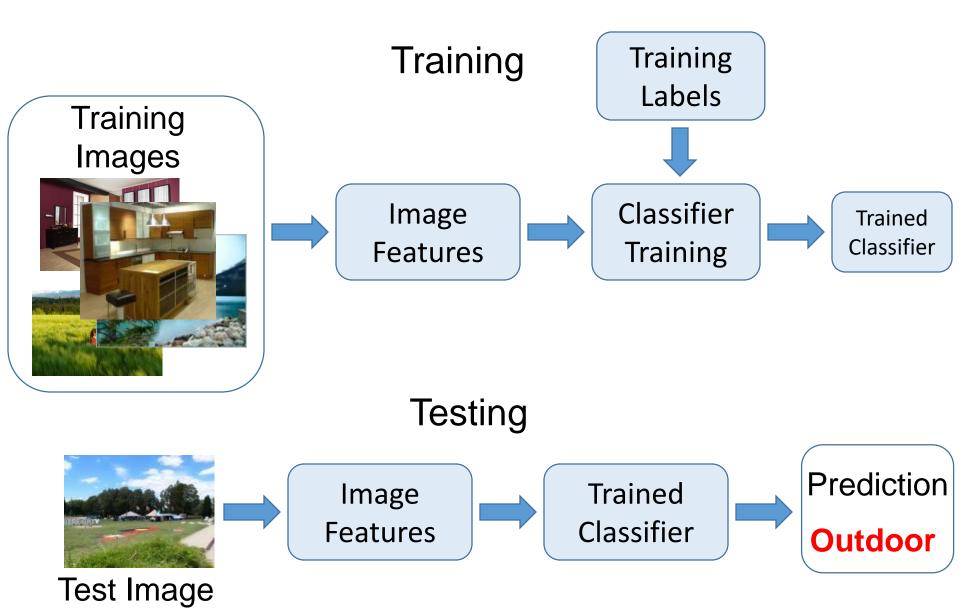
Feature-based classification

Recognition using pose and objects

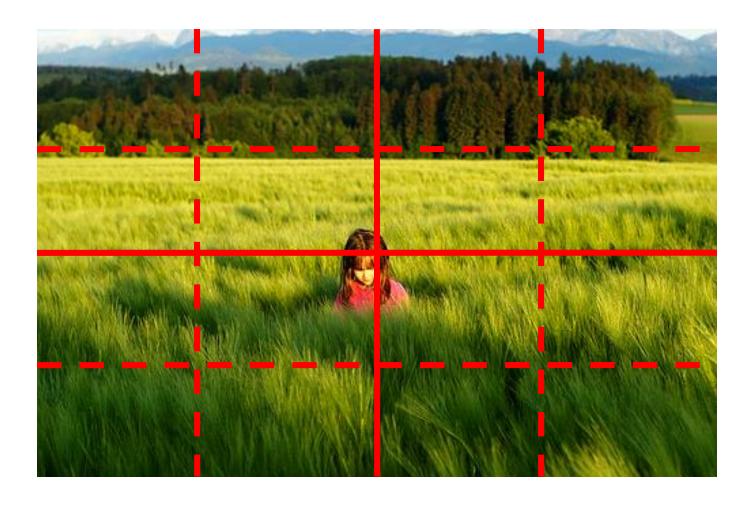
Action recognition as classification

Retrieving actions in movies, Laptev and Perez, 2007

Remember image categorization...



Remember spatial pyramids....

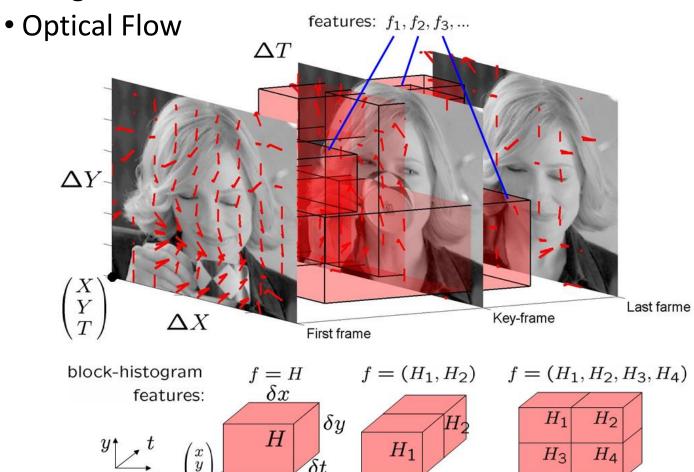


Compute histogram in each spatial bin

Features for Classifying Actions

1. Spatio-temporal pyramids

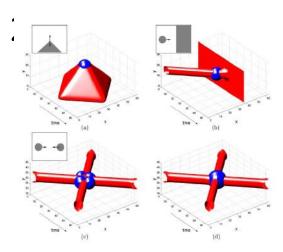
Image Gradients



Temp-2

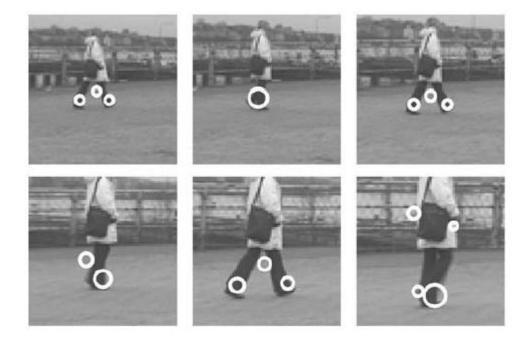
Spat-4

Features for Classifying Actions



Corner detectors in space-time

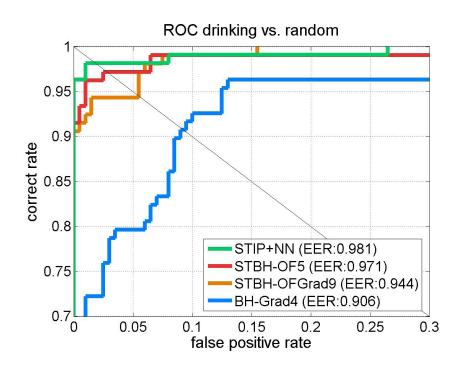
I interest points

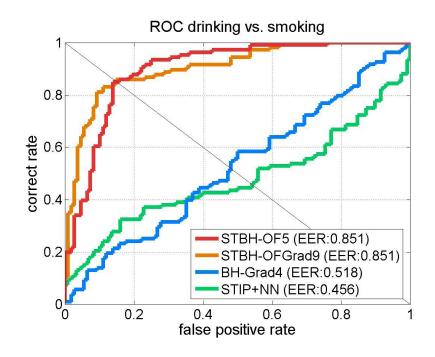


Descriptors based on Gaussian derivative filters over x, y, time

Classification

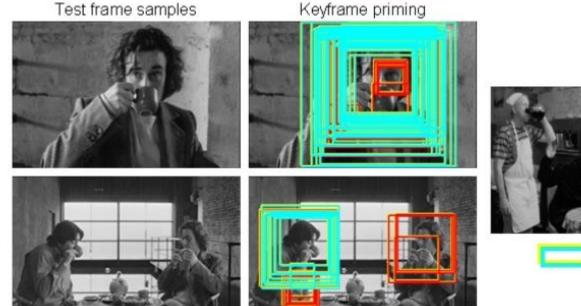
- Boosted stubs for pyramids of optical flow, gradient
- Nearest neighbor for STIP





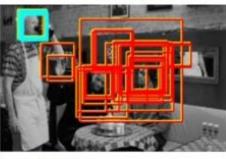
Searching the video for an action

- 1. Detect keyframes using a trained HOG detector in each frame
- 2. Classify detected keyframes as positive (e.g., "drinking") or negative ("other")



Keyframe-primed

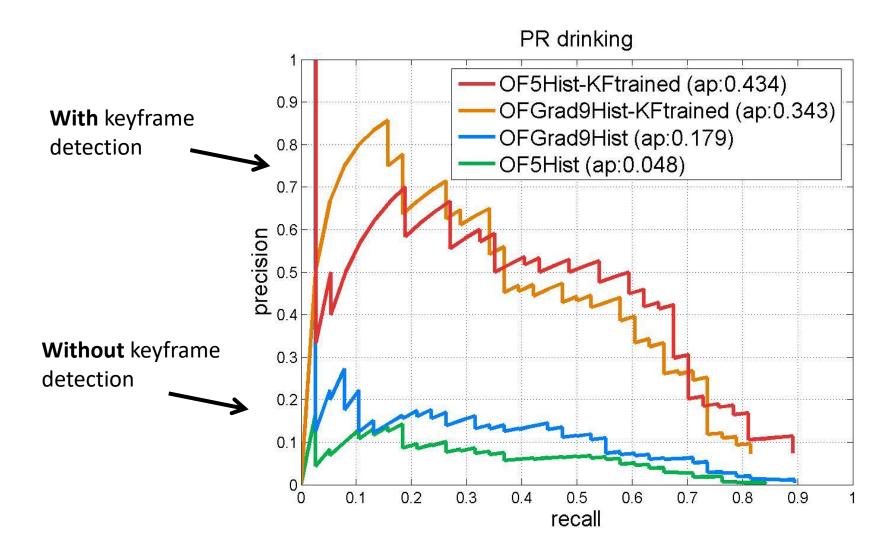
event detection



Keyframe

detections

Accuracy in searching video



"Talk on phone"

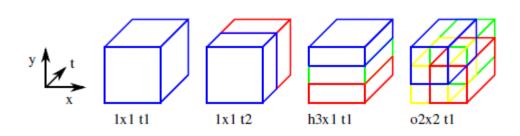
"Get out of car"

Learning realistic human actions from movies, Laptev et al. 2008

Approach

- Space-time interest point detectors
- Descriptors
 - HOG, HOF
- Pyramid histograms (3x3x2)
- SVMs with Chi-Squared Kernel

Interest Points



Spatio-Temporal Binning

Results

	AnswerPhone	GetOutCar	HandShake	HugPerson	Kiss	SitDown	SitUp	StandUp
TL								
Z							4	
FP						, h	M	
Y.								1

Task	HoG BoF	HoF BoF	Best channel	Best combination
KTH multi-class	81.6%	89.7%	91.1% (hof h3x1 t3)	91.8% (hof 1 t2, hog 1 t3)
Action AnswerPhone	13.4%	24.6%	26.7% (hof h3x1 t3)	32.1% (hof o2x2 t1, hof h3x1 t3)
Action GetOutCar	21.9%	14.9%	22.5% (hof o2x2 1)	41.5% (hof o2x2 t1, hog h3x1 t1)
Action HandShake	18.6%	12.1%	23.7% (hog h3x1 1)	32.3% (hog h3x1 t1, hog o2x2 t3)
Action HugPerson	29.1%	17.4%	34.9% (hog h3x1 t2)	40.6% (hog 1 t2, hog o2x2 t2, hog h3x1 t2)
Action Kiss	52.0%	36.5%	52.0% (hog 1 1)	53.3% (hog 1 t1, hof 1 t1, hof o2x2 t1)
Action SitDown	29.1%	20.7%	37.8% (hog 1 t2)	38.6% (hog 1 t2, hog 1 t3)
Action SitUp	6.5%	5.7%	15.2% (hog h3x1 t2)	18.2% (hog o2x2 t1, hog o2x2 t2, hog h3x1 t2)
Action StandUp	45.4%	40.0%	45.4% (hog 1 1)	50.5% (hog 1 t1, hof 1 t2)

Action Recognition using Pose and Objects

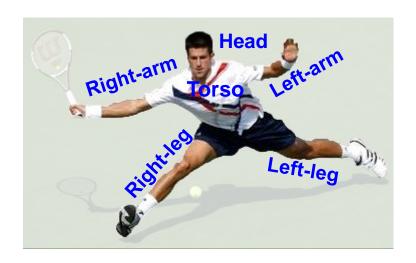
Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities, B. Yao and Li Fei-Fei, 2010

Human-Object Interaction

Holistic image based classification

Integrated reasoning

Human pose estimation



Slide Credit: Yao/Fei-Fei

Human-Object Interaction

Holistic image based classification

Integrated reasoning

- Human pose estimation
- Object detection

Human-Object Interaction

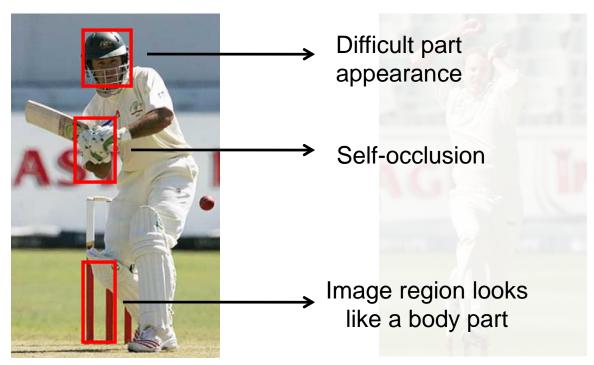
Holistic image based classification

Integrated reasoning

- Human pose estimation
- Object detection
- Action categorization

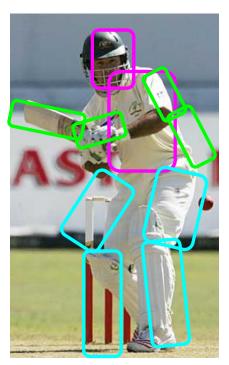
Activity: Tennis Forehand

Human pose estimation is challenging.



- Felzenszwalb & Huttenlocher, 2005
- Ren et al, 2005
- Ramanan, 2006
- Ferrari et al, 2008
- Yang & Mori, 2008
- Andriluka et al, 2009
- Eichner & Ferrari, 2009

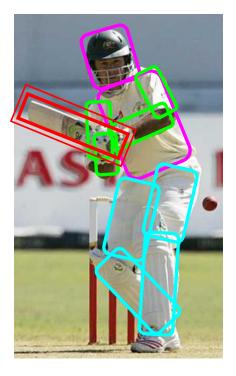
Human pose estimation is challenging.

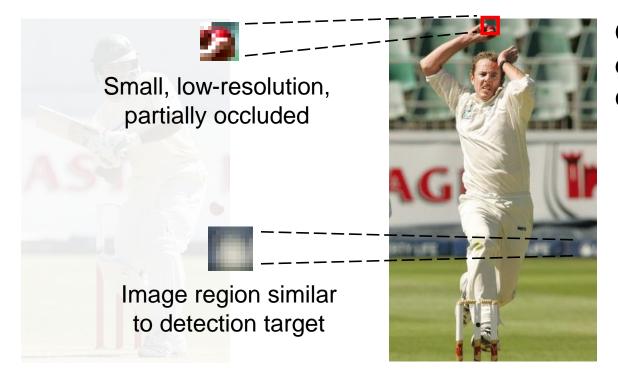


- Felzenszwalb & Huttenlocher, 2005
- Ren et al, 2005
- Ramanan, 2006
- Ferrari et al, 2008
- Yang & Mori, 2008
- Andriluka et al, 2009
- Eichner & Ferrari, 2009

Facilitate

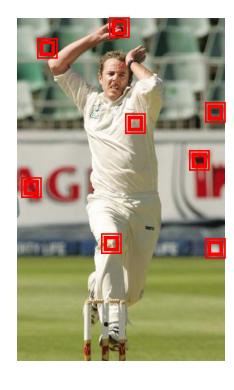
Given the object is detected.





Object detection is challenging

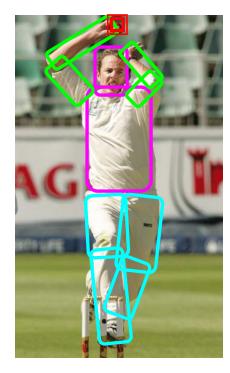
- Viola & Jones, 2001
- Lampert et al, 2008
- Divvala et al, 2009
- Vedaldi et al, 2009



Object detection is challenging

- Viola & Jones, 2001
- Lampert et al, 2008
- Divvala et al, 2009
- Vedaldi et al, 2009

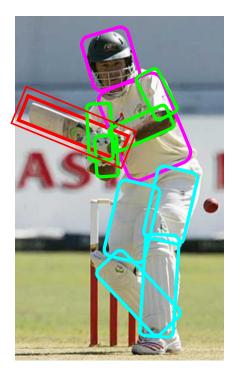
Facilitate

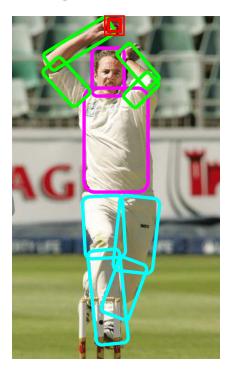


Given the pose is estimated.

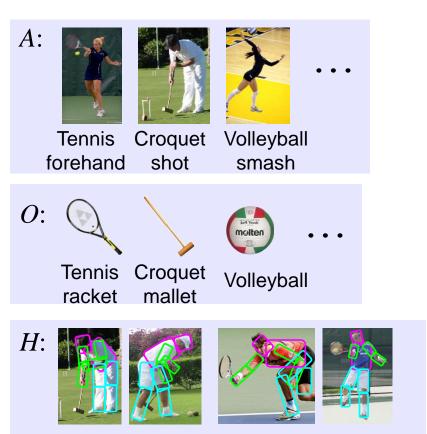
Human pose estimation & Object detection

Mutual Context

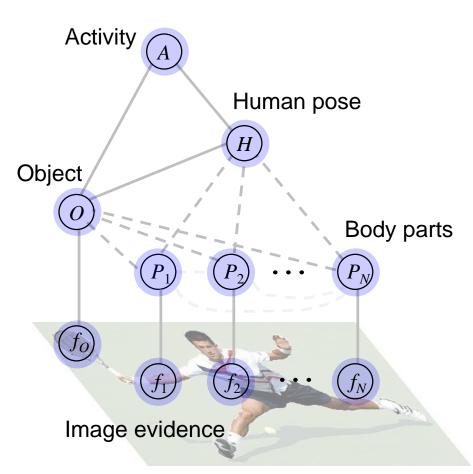




Mutual Context Model Representation



- Intra-class variationsMore than one *H* for each *A*;Unobserved during training.
- *P*: l_p : location; θ_p : orientation; s_p : scale.
- f: Shape context. [Belongie et al, 2002]



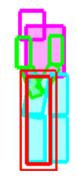
Learning Results

Cricket defensive shot

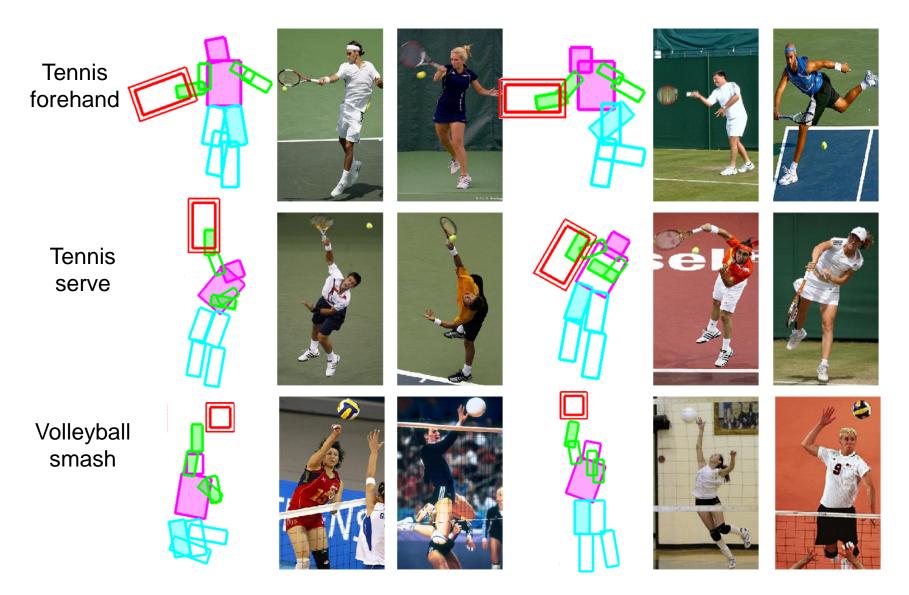


Cricket bowling

Croquet shot



Learning Results

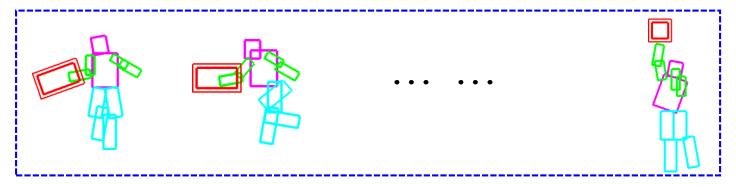


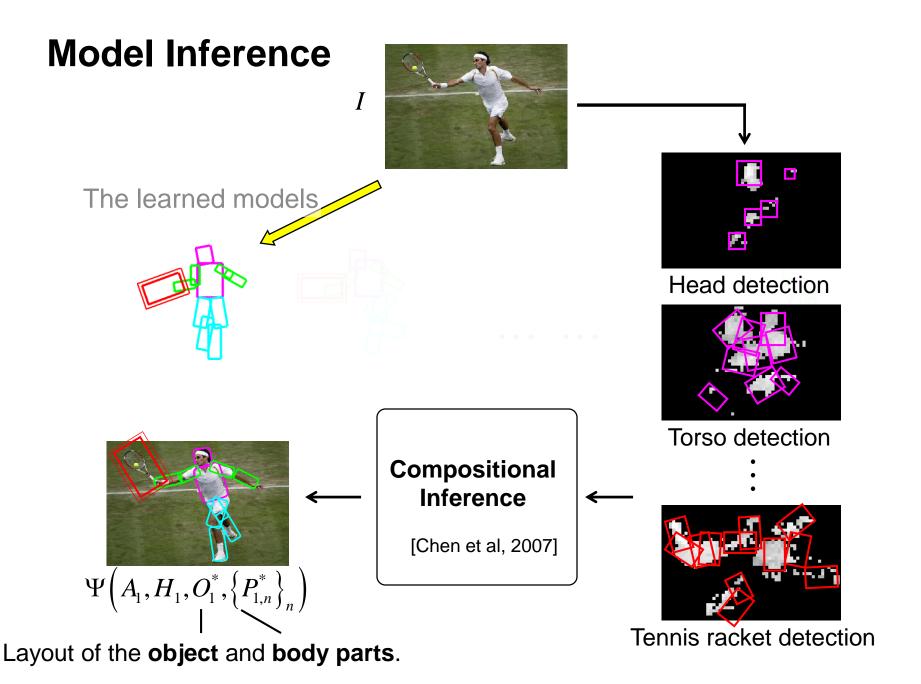
Slide Credit: Yao/Fei-Fei

Model Inference

1

The learned models





Slide Credit: Yao/Fei-Fei

Model Inference The learned models Output $\Psi\left(\overline{A_{K},H_{K},O_{K}^{*},\left\{ P_{K,n}^{*}\right\} _{n}}\right)$ $\Psi\left(\overline{A_1,H_1,O_1^*,\left\{P_{1,n}^*\right\}_n}\right)$

Dataset and Experiment Setup

Sport data set: 6 classes

180 training (supervised with object and part locations) & 120 testing images

Cricket defensive shot

Cricket bowling

Croquet shot

Tennis forehand

Tennis serve

Volleyball smash

Tasks:

- Object detection;
- Pose estimation;
- Activity classification.

[Gupta et al, 2009]

Dataset and Experiment Setup

Sport data set: 6 classes

180 training (supervised with object and part locations) & 120 testing images

Cricket defensive shot

Cricket bowling

Croquet shot

Tennis forehand

Tennis serve

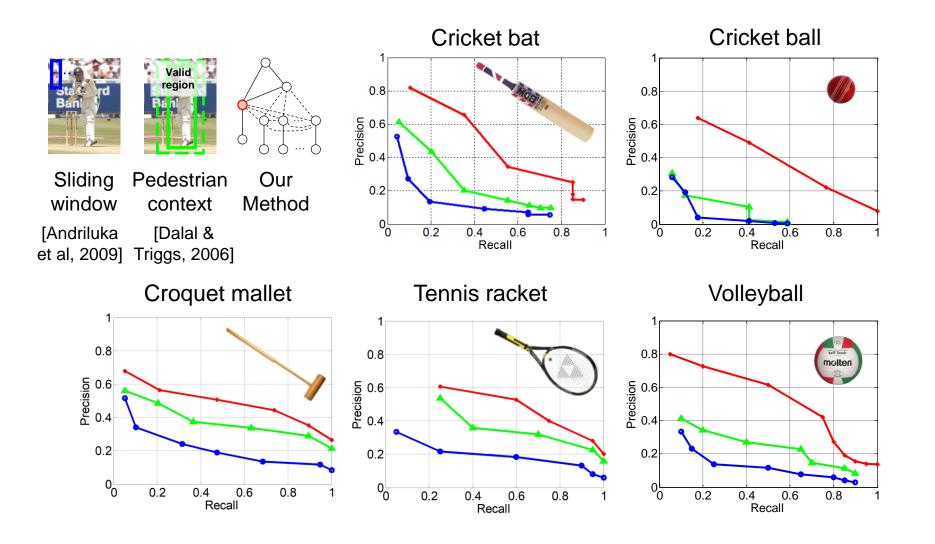
Volleyball smash

Tasks:

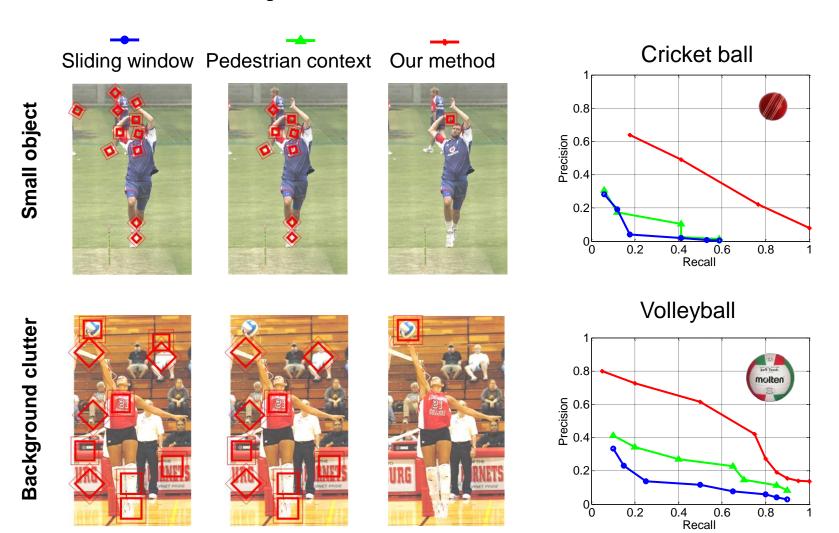
- Object detection;
- Pose estimation;
- Activity classification.

[Gupta et al, 2009]

Object Detection Results



Object Detection Results



Dataset and Experiment Setup

Sport data set: 6 classes

180 training & 120 testing images

Cricket defensive shot

Cricket bowling

Croquet shot

Tennis forehand

Tennis serve

Volleyball smash

Tasks:

- Object detection;
- Pose estimation;
- Activity classification.

[Gupta et al, 2009]

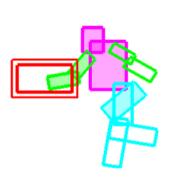
Human Pose Estimation Results

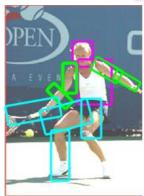
Method	Torso	Upper Leg		Lower Leg		Upper Arm		Lower Arm		Head
Ramanan, 2006	.52	.22	.22	.21	.28	.24	.28	.17	.14	.42
Andriluka et al, 2009	.50	.31	.30	.31	.27	.18	.19	.11	.11	.45
Our full model	.66	.43	.39	.44	.34	.44	.40	.27	.29	.58

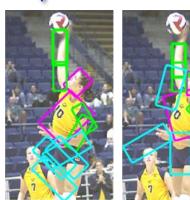
Slide Credit: Yao/Fei-Fei

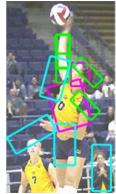
Human Pose Estimation Results

Method	Torso	Upper Leg		Lower Leg		Upper Arm		Lower Arm		Head
Ramanan, 2006	.52	.22	.22	.21	.28	.24	.28	.17	.14	.42
Andriluka et al, 2009	.50	.31	.30	.31	.27	.18	.19	.11	.11	.45
Our full model	.66	.43	.39	.44	.34	.44	.40	.27	.29	.58









Tennis serve model

Our estimation result

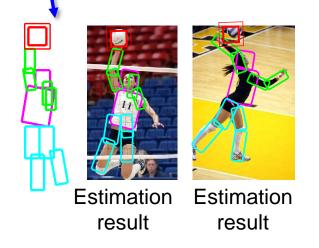
Andriluka et al, 2009

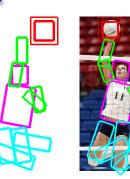
Volleyball smash model

Our estimation Andriluka result et al, 2009

Human Pose Estimation Results

Method	Torso	Upper Leg		Lower Leg		Upper Arm		Lower Arm		Head
Ramanan, 2006	.52	.22	.22	.21	.28	.24	.28	.17	.14	.42
Andriluka et al, 2009	.50	.31	.30	.31	.27	.18	.19	.11	.11	.45
Our full model	.66	.43	.39	.44	.34	.44	.40	.27	.29	.58
One pose per class	.63	.40	.36	.41	.31	.38	.35	.21	.23	.52





stimation Estimation result

Slide Credit: Yao/Fei-Fei

Dataset and Experiment Setup

Sport data set: 6 classes

180 training & 120 testing images

Cricket defensive shot

Cricket bowling

Croquet shot

Tennis forehand

Tennis serve

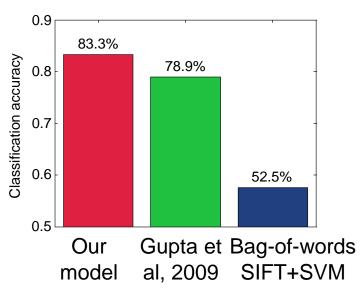
Volleyball smash

Tasks:

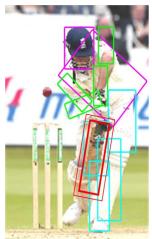
- Object detection;
- Pose estimation;
- Activity classification.

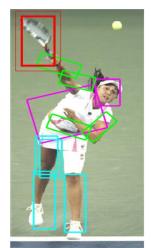
[Gupta et al, 2009]

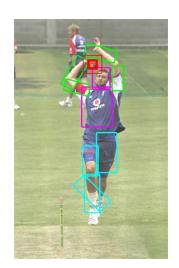
Activity Classification Results

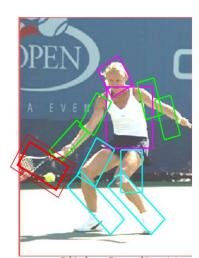


Cricket shot



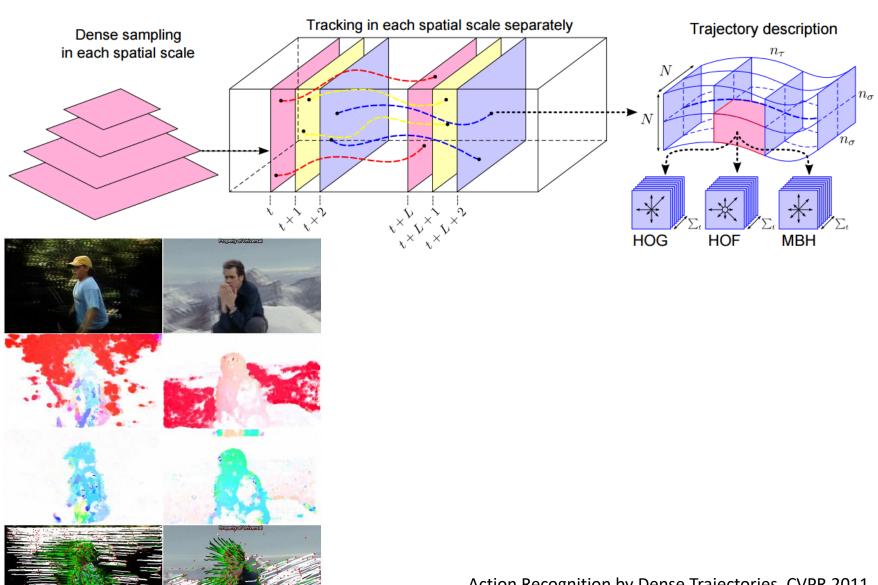






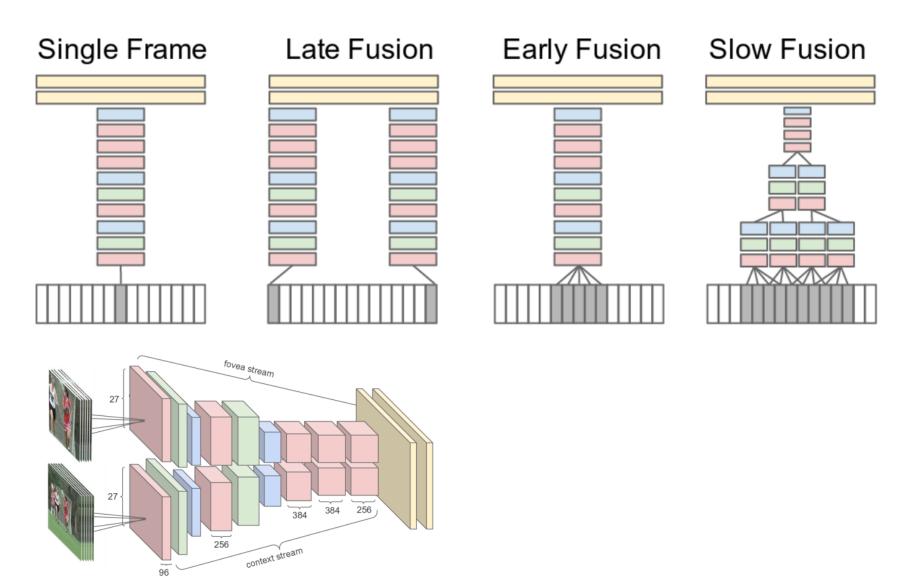
Slide Credit: Yao/Fei-Fei

Motion features – Dense Trajectory



Action Recognition by Dense Trajectories, CVPR 2011 Action Recognition with Improved Trajectories, ICCV 2013

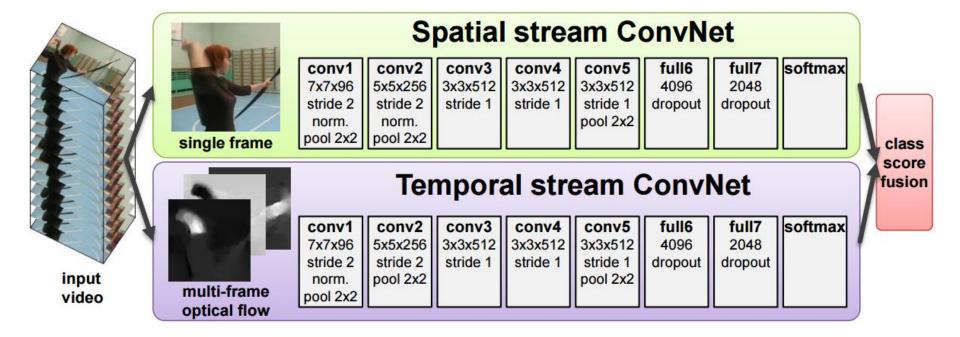
Video classification with CNNs



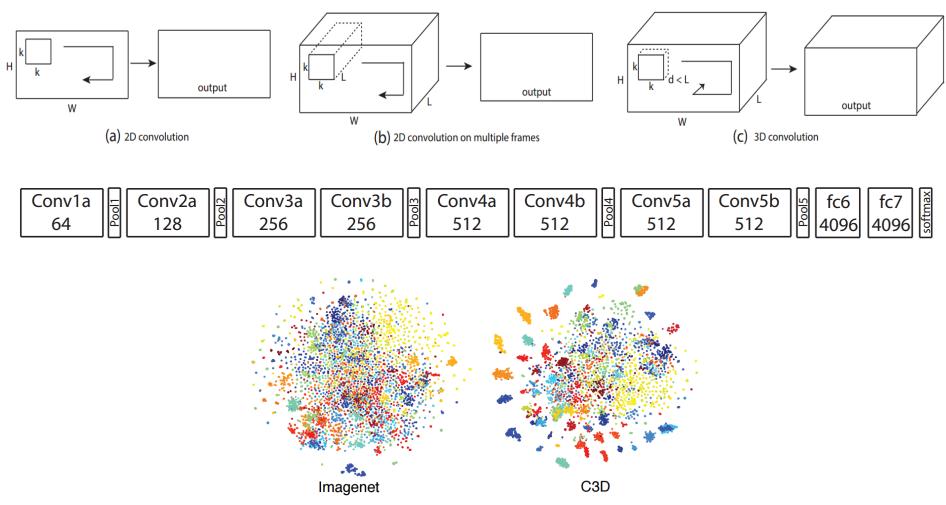
Video classification with CNNs

Sports Video Classification

Two-stream CNN

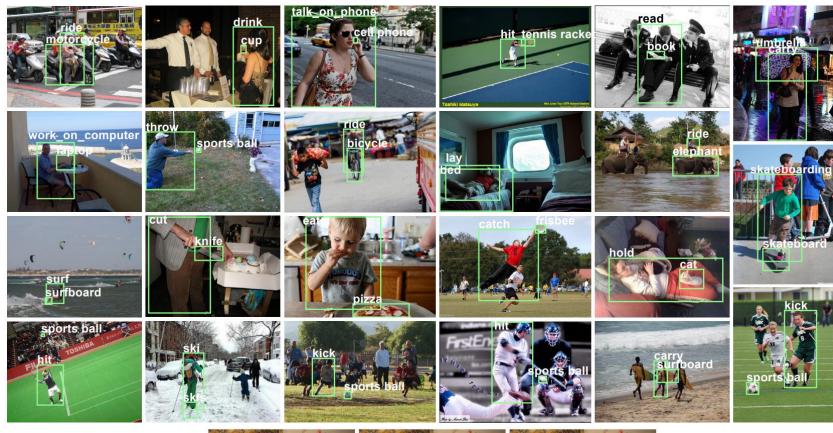


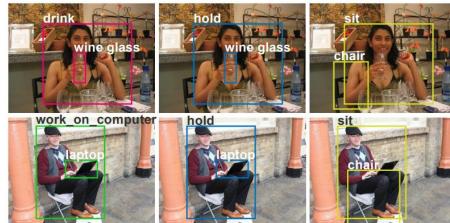
3D Convolutional Networks



Learning Spatiotemporal Features with 3D Convolutional Networks, ICCV 2015

Action recognition -> Semantic role Labeling





Take-home messages

- Action recognition is an open problem.
 - How to define actions?
 - How to infer them?
 - What are good visual cues?
 - How do we incorporate higher level reasoning?

Take-home messages

- Some work done, but it is just the beginning of exploring the problem. So far...
 - Actions are mainly categorical (could be framed in terms of effect or intent)
 - Most approaches are classification using simple features (spatial-temporal histograms of gradients or flow, s-t interest points, SIFT in images)
 - Just a couple works on how to incorporate pose and objects
 - Not much idea of how to reason about long-term activities or to describe video sequences