Additional notes on homography

October 11, 2013

1 Homography matrix

Given a set of corresponding image points P and Q in two images, we want to estimate the 3×3 homography H, such that $q \equiv H p$, where p represents the homogeneous coordinate of P and q represents the homogeneous coordinate of Q. Let $\left(u_{q}, v_{q}\right)$ and $\left(u_{p}, v_{p}\right)$ represent the actual image coordinates of Q and P respectively. The homography equation can then be rewritten as

$$
\left[\begin{array}{c}
w u_{q} \\
w v_{q} \\
w
\end{array}\right]=H\left[\begin{array}{c}
u_{p} \\
v_{p} \\
1
\end{array}\right]
$$

This equation can be solved as below:

$$
u_{q}=\frac{h_{1}^{T} p}{h_{3}^{T} p}, v_{q}=\frac{h_{2}^{T} p}{h_{3}^{T}}, \text { where } H=\left[\begin{array}{l}
h_{1}^{T} \\
h_{2}^{T} \\
h_{3}^{T}
\end{array}\right]
$$

Converting the above equations in linear form,

$$
h_{1}^{T} p-u_{q}\left(h_{3}^{T} p\right)=0, h_{2}^{T} p-v_{q}\left(h_{3}^{T} p\right)=0
$$

Given n corresponding pairs of points $\left(p_{i}, q_{i}\right)$, we can combine all the equations in a matrix form as $L h=0$, where

$$
L=\left[\begin{array}{ccc}
p_{1}^{T} & 0 & -u_{1 q} p_{1}^{T} \\
0 & p_{1}^{T} & -v_{1 q} p_{1}^{T} \\
\ldots & & \\
p_{n}^{T} & 0 & -u_{n q} p_{n}^{T} \\
0 & p_{n}^{T} & -v_{n q} p_{n}^{T}
\end{array}\right]
$$

and

$$
h=\left[\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right]
$$

Since H is defined only up to scale, we put additional constraint on H, i.e., $\|h\|^{2}=1$. The least squares solution of h is then given by the eigenvector corresponding to the smallest eigenvalue of matrix $L^{T} L$.

