
ECE 5554: Computer Vision, Fall 2013

PS4

Instructor: Devi Parikh (parikh@vt.edu)
TA: Neelima Chavali (gneelima@vt.edu)

Due: Monday, November 18th, 11:55 pm

Instructions

1. Answer sheets must be submitted on Scholar. Hard copies will not be accepted.

2. Please submit your answer sheet containing the written answers in a �le named:
FirstName_LastName_PS4.pdf.

3. Please submit your code and input/output images in a zip �le named: FirstName_LastName_PS4.zip.
Please do not create subdirectories within the main directory.

4. You may collaborate with other students. However, you need to write and implement your own
solutions. Please list the names of students you discussed the assignment with.

5. For the implementation questions, make sure your code is bug-free and works out of the box. Please
be sure to submit all main and helper functions. Be sure to not include absolute paths. Points will be
deducted if your code does not run out of the box.

6. Display plots in your answer sheet whereever required. Points will be deducted for not following this
protocol.

1 Short answer questions [25 points]

1. When performing interest point detection with the Laplacian of Gaussian, how would the results di�er
if we were to (a) take any positions that are local maxima in scale-space, or (b) take any positions whose
�lter response exceeds a threshold? Speci�cally, what is the impact on repeatability or distinctiveness
of the resulting interest points?

2. What is an �inlier� when using RANSAC to solve for the epipolar lines for stereo with uncalibrated
views, and how do we compute those inliers?

3. Name and brie�y explain two possible failure modes for dense stereo matching, where points are
matched using local appearance and correlation search within a window.

4. What exactly does the value recorded in a single dimension of a SIFT keypoint descriptor signify?

5. If using SIFT with the Generalized Hough Transform to perform recognition of an object instance,
what is the dimensionality of the Hough parameter space? Explain your answer.

1

mailto:parikh@vt.edu
mailto:gneelima@vt.edu


2 Programming problem [75 points]

For this problem, you will implement a video search method to retrieve relevant frames from a video based
on the features in a query region selected from some frame. We are providing image data and some starter
code for this assignment.
Provided data
You can access pre�computed SIFT features here:
https://filebox.ece.vt.edu/~F13ECE5554/resources/PS4_material/PS4SIFT.zip.
The associated images are stored here:
https://filebox.ece.vt.edu/~F13ECE5554/resources/PS4_material/PS4Frames.zip.
Please note that the data takes about 6GB. Each .mat �le in the provided SIFT data corresponds to a sin-
gle image, and contains the following variables, where n is the number of detected SIFT features in that image:

descriptors nx128 double // the SIFT vectors as rows
imname 1x57 char // name of the image �le that goes with this data
numfeats 1x1 double // number of detected features
orients nx1 double // the orientations of the patches
positions nx2 double // the positions of the patch centers
scales nx1 double // the scales of the patches

Provided code
The following are the provided code �les. You are not required to use any of these functions, but you will
probably �nd them helpful. You can access the code from here:
https://filebox.ece.vt.edu/~F13ECE5554/resources/PS4_material/PS4Code.zip

• loadDataExample.m: Run this �rst and make sure you understand the data format. It is a script that
shows a loop of data �les, and how to access each descriptor. It also shows how to use some of the
other functions below.

• displaySIFTPatches.m: given SIFT descriptor info, it draws the patches on top of an image

• getPatchFromSIFTParameters.m: given SIFT descriptor info, it extracts the image patch itself and
returns as a single image

2

https://filebox.ece.vt.edu/~F13ECE5554/resources/PS4_material/PS4SIFT.zip
https://filebox.ece.vt.edu/~F13ECE5554/resources/PS4_material/PS4Frames.zip
https://filebox.ece.vt.edu/~F13ECE5554/resources/PS4_material/PS4Code.zip


• selectRegion.m: given an image and list of feature positions, it allows a user to draw a polygon
showing a region of interest, and then returns the indices within the list of positions that fell within
the polygon.

• dist2.m: a fast implementation of computing pairwise distances between two matrices for which each
row is a data point

• kmeansML.m: a faster k-means implementation that takes the data points as columns.

What to implement and discuss in the writeup
Write one script for each of the following (along with any helper functions you �nd useful), and in your
pdf writeup report on the results, explain, and show images where appropriate. Your code must access the
frames and the SIFT features from subfolders called `frames' and `sift' respectively, in your current working
directory.

1. Raw descriptor matching [15 pts]: Allow a user to select a region of interest (see provided
selectRegion.m) in one frame, and then match descriptors in that region to descriptors in the sec-
ond image based on Euclidean distance in SIFT space. Display the selected region of interest in the
�rst image (a polygon), and the matched features in the second image, something like the below ex-
ample. Use the two images and associated features in the provided �le twoFrameData.mat (in the
gzip �le) to demonstrate. Note, no visual vocabulary should be used for this one. Name your script
rawDescriptorMatches.m

2. Visualizing the vocabulary [20 pts]: Build a visual vocabulary. Display example image patches
associated with two of the visual words. Choose two words that are distinct to illustrate what the
di�erent words are capturing, and display enough patch examples so the word content is evident (e.g.,
say 25 patches per word displayed). See provided helper function getPatchFromSIFTParameters.m.
Explain what you see. Name your script visualizeVocabulary.m. Please submit your visual words
in a �le called kMeans.mat. This �le should contain a matrix of size kx128 called kMeans.

3. Full frame queries [20 pts]: After testing your code for bag-of-words visual search, choose 3 di�erent
frames from the entire video dataset to serve as queries. Display the M=5 most similar frames to each
of these queries (in rank order) based on the normalized scalar product between their bag of words
histograms. Explain the results. Name your script fullFrameQueries.m

4. Region queries [20 pts]: Select your favorite query regions from within 4 frames (which may be
di�erent than those used above) to demonstrate the retrieved frames when only a portion of the SIFT
descriptors are used to form a bag of words. Try to include example(s) where the same object is
found in the most similar M frames but amidst di�erent objects or backgrounds, and also include a

3



failure case. Explain the results, including possible reasons for the failure cases. Name your script
regionQueries.m

Tips: overview of framework requirements
The basic framework will require these components:

• Compute nearest raw SIFT descriptors. Use the Euclidean distance between SIFT descriptors to
determine which are nearest among two images' descriptors. That is, �match� features from one image
to the other, without quantizing to visual words.

• Form a visual vocabulary. Cluster a large, representative random sample of SIFT descriptors from
some portion of the frames using k-means. Let the k centers be the visual words. The value of k
is a free parameter; for this data something like k=1500 should work, but feel free to play with this
parameter [see Matlab's kmeans function, or provided kmeansML.m code]. Note: You may run out of
memory if you use all the provided SIFT descriptors to build the vocabulary.

• Map a raw SIFT descriptor to its visual word. The raw descriptor is assigned to the nearest visual
word. [see provided dist2.m code for fast distance computations]

• Map an image's features into its bag-of-words histogram. The histogram for image Ij is a k-dimensional
vector:

F (Ij) = [freq1,j , freq2,j , ..., freqk,j ]

, where each entry freqi,j counts the number of occurrences of the i-th visual word in that image,
and k is the number of total words in the vocabulary. In other words, a single image's list of n SIFT
descriptors yields a k-dimensional bag of words histogram. [Matlab's histc is a useful function]

• Compute similarity scores. Compare two bag-of-words histograms using the normalized scalar product.

• Sort the similarity scores between a query histogram and the histograms associated with the rest of the
images in the video. Pull up the images associated with the M most similar examples. [see Matlab's
sort function]

• Form a query from a region within a frame. Select a polygonal region interactively with the mouse,
and compute a bag of words histogram from only the SIFT descriptors that fall within that region.
You may weight it with tf-idf. [see provided selectRegion.m code]

3 OPTIONAL: Extra credit (up to 10 points each, max 20 points
total)

1. Stop list and tf-idf. Implement a stop list to ignore very common words, and apply tf-idf weighting
to the bags of words. Discuss and create an experiment to illustrate the impact on your results.

2. Spatial veri�cation. Implement a spatial consistency check to post-process and re-rank the shortlist
produced based on the normalized scalar product scores. Demonstrate a query example where this
improves the results.

This assignment is adapted from PS4 of Kristen Grauman's CS 376: Computer Vision at UT Austin.

4

http://www.cs.utexas.edu/~grauman/courses/spring2011/index.htmls

	 Short answer questions [25 points] 
	 Programming problem [75 points] 
	 OPTIONAL: Extra credit (up to 10 points each, max 20 points total) 

