
ECE 5554: Computer Vision, Fall 2013

PS3

Instructor: Devi Parikh (parikh@vt.edu)
TA: Neelima Chavali (gneelima@vt.edu)

Due: Monday, October 21st, 11:59 pm

Instructions

1. Answer sheets must be submitted on Scholar. Hard copies will not be accepted.

2. Please submit your answer sheet containing the written answers in a �le named:
FirstName_LastName_PS3.pdf.

3. Please submit your code and input/output images in a zip �le named: FirstName_LastName_PS3.zip.
Please do not create subdirectories within the main directory.

4. You may collaborate with other students. However, you need to write and implement your own
solutions. Please list the names of students you discussed the assignment with.

5. For the implementation questions, make sure your code is bug-free and works out of the box. Please
be sure to submit all main and helper functions. Be sure to not include absolute paths. Points will be
deducted if your code does not run out of the box.

6. Display plots in your answer sheet whereever required. Points will be deducted for not following this
protocol.

1 Programming: Image mosaics [100 points]

In this exercise, you will implement an image stitcher that uses image warping and homographies to auto-
matically create an image mosaic. We will focus on the case where we have two input images that should
form the mosaic, where we warp one image into the plane of the second image and display the combined
views. This problem will give some practice manipulating homogeneous coordinates, computing homography
matrices, and performing image warps. For simplicity, we'll specify corresponding pairs of points manually
using mouse clicks or inbuilt matlab functions. For extra credit, you can optionally implement an automated
correspondence process with local feature matching. Implement the following components as required:

1. Getting correspondences: write code to get manually identi�ed corresponding points from two
views. Look at Matlab's ginput function for an easy way to collect mouse click positions. Or checkout
the function cpselect in Matlab's Image Processing Toolbox for help selecting corresponding points.
The results will be sensitive to the accuracy of the corresponding points; when providing clicks, choose
distinctive points in the image that appear in both views.

2. Computing the homography parameters: [20 points]
Write a function H = computeH(t1, t2)

that takes a set of corresponding image points t1, t2(both t1 and t2 should be 2xN matrices) and
computes the associated 3 x 3 homography matrix H. The function should take a list of n ≥ 4 pairs of

1

mailto:parikh@vt.edu
mailto:gneelima@vt.edu


corresponding points from the two views, where each point is speci�ed with its 2d image coordinates.
Verify that the homography matrix your function computed is correct by mapping the clicked image
points from one view to the other, and displaying them on top of each respective image. (imshow,
followed by hold on and plot). Be sure to handle homogenous and non-homogenous coordinates
correctly. Save this function in a �le called computeH.m and submit it.
Note: Your estimation procedure may perform better if image coordinates range from 0 to 2. Consider
scaling your measurements to avoid numerical issues.

3. Warping between image planes: [30 points]
Write a function [warpIm,mergeIm] = warpImage(inputIm, refIm, H) which takes as input an im-
age inputIm, a reference image refIm, and a 3x3 homography matrix H, and returns 2 images as
outputs. The �rst image is warpIm, which is the input image inputIm warped according to H to be in
the frame of the reference image refIm. The second output image is mergeIm, a single mosaic image
with a larger �eld of view containing both the input images. All the inputs and outputs should be
MxNx3 matrices. To avoid holes, use an inverse warp. Warp the points from the source image into the
reference frame of the destination, and compute the bounding box in that new reference frame. Then
sample all points in that destination bounding box from the proper coordinates in the source image.
Note that transforming all the points will generate an image of a di�erent shape / dimensions than
the original input. Also note that the input and output images will be of di�erent dimensions. Once
you have the input image warped into the reference image's frame of reference, create a merged image
showing the mosaic. Create a new image large enough to hold both the views; overlay one view onto
the other, simply leaving it black wherever no data is available. Don't worry about artifacts that result
at the boundaries. Save this function in a �le called warpImage.m and submit it.

4. Apply your system to the following pairs of images, and display the output warped image and mosaic in
your answer sheet. Pair 1: crop1.jpg, crop2.jpg. For this pair use these corresponding points: cc1.mat,
cc2.mat.
Pair 2: wdc1.jpg, wdc2.jpg. For this pair use appropriate corresponding points of your choice. Name the
variables containing these points as points1 and points2 and submit them in a �le called points.mat.
points1 and points2 should be matrices of size 2xN. [15 points]

5. Show one additional example of a mosaic you create using images that you have taken. You might
make a mosaic from two or more images of a broad scene that requires a wide angle view to see well.
Or, make a mosaic using two images from the same room where the same person appears in both. [20
points]

6. Warp one image into a frame region in the second image. To do this, let the points from the one
view be the corners of the image you want to insert in the frame, and let the corresponding points
in the second view be the clicked points of the frame (rectangle) into which the �rst image should be
warped. Use this idea to replace one surface in an image with an image of something else. For example
� overwrite a billboard with a picture of your dog, or project a drawing from one image onto the street
in another image, or replace a portrait on the wall with someone else's face, or paste a Powerpoint
slide onto a movie screen, etc. Display the results in your answer sheet. [15 points]

2 [OPTIONAL] Extra credit [up to 10 points each, max 30 points]

1. Replace the manual correspondence stage with automatic interest point detection and local feature
matching. Check out available code here to compute the local interest points and features:
http://www.vlfeat.org/overview/sift.html

http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html

2. Implement RANSAC for robustly estimating the homography matrix from noisy correspondences.
Show with an example where it successfully gives good results even when there are outlier (bad) corre-

2

https://filebox.ece.vt.edu/~F13ECE5554/resources/images/crop1.jpg
https://filebox.ece.vt.edu/~F13ECE5554/resources/images/crop2.jpg
https://filebox.ece.vt.edu/~F13ECE5554/resources/cc1.mat
https://filebox.ece.vt.edu/~F13ECE5554/resources/cc2.mat
https://filebox.ece.vt.edu/~F13ECE5554/resources/images/wdc1.jpg
https://filebox.ece.vt.edu/~F13ECE5554/resources/images/wdc2.jpg
http://www.vlfeat.org/overview/sift.html
http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html


spondences given as input. Compare the robust output to the original (non-RANSAC) implementation
where all correspondences are used.

3. Rectify an image with some known planar surface (say, a square �oor tile, or the rectangular face of a
building facade) and show the virtual fronto-parallel view. In this case there is only one input image.
To solve for H, you de�ne the correspondences by clicking on the four corners of the planar surface in
the input image, and then associating them with hand-speci�ed coordinates for the output image. For
example, a square tile's corners from the non-frontal view could get mapped to [0 0; 0 N; N 0; N

N] in the output.

4. Make a short video in the style of the HP commercial's video which you saw in class. Building on #3
above, let the frame in the output video move to di�erent positions over time, and warp the framed
image into the correct position for every video frame in the sequence.

Matlab hints:

1. Useful functions: round, interp2, meshgrid, isnan

2. There are some built-in Matlab functions that could do much of the work for this project. However, to
get practice with the workings of the algorithms, we want you to write your own code. Speci�cally, you
may not use any of these functions in your implementation: cp2tform, imtransform, tformarray,
tformfwd, tforminv, maketform.

This assignment is adapted from the following two sources:

1. PS3 from Kristen Grauman's CS 376: Computer Vision at UT Austin.

2. HW1 of Martial Herbert's course 16-720 Computer Vision taught in Fall 2005.

3

http://www.youtube.com/watch?v=2RPl5vPEoQk
http://www.cs.utexas.edu/~grauman/courses/spring2011/index.htmls

	 Programming: Image mosaics [100 points]
	[OPTIONAL] Extra credit [up to 10 points each, max 30 points]

