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Abstract

A procedure for identifying functionally equivalent faults and
improving the performance of diagnostic test pattern generation is
described in this paper. The procedure is based on evaluation of
Saulty functions in cones of dominator gates of fault pairs. This
is enhanced by utilizing circuit redundancy information. Equiva-
lence is proved without the previously required circuit transforma-
tions. Stem-branch equivalences for reconvergent stems and their
branches are identified efficiently obviating the need to check for
non-masking and multiple-path sensitization. Both static and dy-
namic techniques are developed to exploit relations among inputs
of dominator cones. This reduces the simulation time required by
the procedure and enables evaluation of larger cones than could
be evaluated earlier. As a result, more equivalent fault pairs are
identified. Experiments performed on ISCAS8S circuits and full
scan ISCAS89 circuits are used to demonstrate the effectiveness of
the proposed techniques.

1 Introduction

Diagnostic test generation is both difficult and slow in the pres-
ence of a large number of functionally equivalent faults [1,2]. This
is similar to the problem of generating detection oriented test pat-
terns in the presence of undetectable faults. Some early diagnos-
tic test pattern generators [3-5] have not attempted to prove fault
equivalence while others have used a variety of techniques with
different degrees of success. Structural analysis [6] requires circuit
graph manipulation, and is useful for fanout free regions of the cir-
cuit [7]. Other techniques have targeted two-level logic networks
[8] or have required exhaustive enumeration [9]. The learning and
implication based technique [10] has worst case exponential com-
plexity. DIATEST [1] is a diagnostic test generation procedure
that uses a branch and bound search procedure. It explores all pos-
sibilities to generate a distinguishing test for a fault pair before
concluding that the faults are equivalent. Local circuit transforma-
tions and symmetric circuit identification have also been used for
proving fault equivalence [2]. The procedure of [2] modifies the
circuit structure and requires test generation to identify equivalent
fault. Recent work [11] uses implication and evaluation techniques
for proving functional equivalence of fault pairs. The implication
technique is based on implication of faulty values, and comparison
of fault effects at common successor and dominator gates. Evalua-
tion techniques are based on evaluation of faulty functions at com-
mon dominator gates. The functions (represented as truth tables)
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are computed over a set of intermediate circuit lines that determine
the value of the dominator gate output. These intermediate circuit
lines define the inputs of a cone with the dominator as its output.
If two faulty functions are identical for all the cone input combina-
tions that can be justified by primary input combinations, then the
corresponding faults are equivalent. Although the method identi-
fies a large number of equivalent faults, it is limited to faults that
require evaluation of cones with small numbers of inputs. Thus,
some equivalent fault pairs may not be identified.

In this paper, we develop techniques that will allow us to eval-
uate larger cones and identify additional functionally equivalent
fault pairs compared to [11]. Both static and dynamic techniques
are used to find relations among dominator cone inputs. Using
these relations, we can remove from evaluation combinations of
cone input values which are not justifiable by any primary input
combination. This reduces simulation time (since certain cone in-
put combinations do not need to be evaluated) and permits evalua-
tion of larger cones when trying to prove equivalence of two faults.
Another distinguishing aspect of this paper compared to [11] is
the utilization of redundant fault information during evaluation of
faulty functions at dominator gates. We derive conditions under
which a fault activated and propagated to a dominator gate output
by a cone input combination will not be detected and, therefore,
will not be distinguished from another fault that is not propagated
to that dominator gate. Consideration of such input combinations
can be avoided.

This paper is organized as follows. In section 2, we present
definitions and background material. In section 3, we describe
fault equivalence identification using circuit redundancy informa-
tion. Static and dynamic techniques to extract relations among
cone inputs are introduced in section 4. Experimental results are
included in section 5.

2 Preliminaries

In this section, we introduce notation and definitions, and re-
view the background required to describe the proposed techniques
for identifying equivalent faults. We consider a and 3 which are a
pair of stuck-at faults in a circuit N, with L, and Lg being their
corresponding faulty lines. The circuits in the presence of faults ¢
and 3 are N, and Ng, respectively.

Definition 1 (Functional Equivalence(a,3)) If the circuit has
n primary inputs Ti,T2,...,Tn and ™ primary outputs
PO1, POa,...,POn, and the functions corresponding to the
primary outputs are f1, fa,..., fm, then fault o is functionally
equivalent to fault 3 if and only if

L Za),Vi=1,...,m

fia(Z1,22,...,20) = fig(z1,22,.
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Figure 1: Functional Evaluation at a Dominator Gate

where fia(z1,Z2,...,2n) and fig(z1,Z2,...,2a) are the re-
spective faulty functions at primary output PO; for faults o and

Due to the presence of a fault, certain nodes in a circuit are
set to constant values. By removing these nodes we obtain a sim-
plified circuit that realizes the same faulty function. Considering
faults o and 3, let the corresponding simplified circuits be S(Nq)
and S(Np).

Definition 2 (Structural Equivalence(a,3)) Faults o and (3 in
logic circuit N are said 1o be structurally equivalent if and only

if S(Na) = S(Np) [6].

Definition 3 (Dominator gate(l)) A dominator gate of line l is a
gate through which all the paths from | to any primary output pass
[12-14].

To show that two faults a and 3 are equivalent, we evaluate
the faulty functions at the output of a common dominator gate of
the faulty lines Lo and Lg by means of the dominator cone. The
dominator cone is found by tracing the circuit back from the dom-
inator gate output to the primary inputs. The trace is stopped as
soon as we find intermediate nodes of the circuit that completely
determine the faulty functions at the dominator gate output and are
predecessors of L, and Lg. Figure 1 is an example of a dominator
cone. C is a common dominator gate of faults & and 8. A and B
are the inputs of the dominator cone. The good logic function at
Cinterms of A and B is f(A, B) = AB + AB, and the faulty
functions are fo (A, B) = AB and f5(A, B) = AB.

In this paper, unless otherwise stated, by equivalence we mean
functional equivalence. The following theorem is provided for
completeness of discussion.

Theorem 1 If the logic functions at the common dominator gate
Jor faults o and (3 are identical when computed in terms of the
inputs of the dominator cone, then faults o and 3 are functionally
equivalent [11].

We evaluate f, and fg at the common dominator gate by com-
paring their truth tables. The truth tables are written in terms of
the inputs of the dominator cone. To show that faults o and 3 are
equivalent, we need to show that any combination of the domina-
tor cone inputs for which fo # fg cannot be justified by a primary
input combination (i.e., there does not exist a primary input com-
bination that results in this combination). In other words, if the
logic values at the common dominator gate for fault o and fault
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B are different only for vectors t1,2,...,tm at the cone inputs,
and none of t1,12,...,tm is justifiable, then faults a and 3 are
functionally equivalent.

Diagnostic ATPG is typically applied when a fault detection
test set is available. Thus, identification of equivalent faults starts
from the fault pairs left indistinguished by a fault detection test
set. We perform diagnostic fault simulation to obtain the indistin-

guished pairs that will be targeted by the proposed procedure.

3 Equivalence Identification Using Redun-

dancy Information

This section describes techniques to identify functionally
equivalent faults using information about redundant faults. Redun-
dancy information is utilized during evaluation of faulty functions
at a common dominator gate.

3.1 Local Circuit Transformations and Stem-
branch Equivalence

Hartanto et al.[2] introduced local circuit transformations and
stem-branch properties to identify equivalent faults utilizing cir-
cuit redundancy information. A local circuit transformation can
help establish that fault pairs located at the terminals of a simple
gate are functionally equivalent, even if they are not structurally
equivalent, in the presence of redundant faults at other terminals
of that gate. In addition to local circuit transformations, test gen-
eration is required to prove fault equivalence in [2]. Faults on a
fanout stem and its branches can be functionally equivalent be-
cause of redundancies and reconvergence. To prove equivalence,
the method of [2] requires analysis of self-masking and multiple-
path sensitization.

The technique presented in this paper is different from the pre-
vious approach in that we use redundancy information in the con-
text of functional evaluation at a common dominator gate. As a re-
sult, equivalent faults at the terminals of a gate are identified with-
out performing local circuit transformations and without the asso-
ciated test generation. Stem-branch equivalence for a reconvergent
fanout stem and its branches is also identified without checking for
non-masking and multiple-path sensitization.

3.2 Equivalence Identification through Func-
tional Evaluation with Redundancy Informa-
tion

In this section, we develop techniques to utilize redundant fault
information during functional evaluation. As explained earlier,
faulty functions are evaluated at a common dominator gate in
terms of the cone inputs. If any cone input combination produces
different output values at the dominator gate, a justification pro-
cedure is invoked to find a primary input combination that yields
the cone input combination. If such a primary input combination
is found, then the two faults may not be equivalent and we simply
abort on that fault pair. Otherwise, additional cone input com-
binations (that result in different output values at the dominator
gate) must be justified. We observe that if a cone input combina-
tion produces different faulty values at the dominator gate output,
then exactly one of the faults is propagated to the dominator gate
output. The following Lemma specifies when the fault effect of a
fault propagated to a common dominator gate can be ignored, and.
justification of the cone input combination can be avoided using
redundant fault information.

Lemma 1 If a detected fault o and a redundant fault ~ produce
identical faulty values at a common dominator gate of o and ~y
for cone input combination test;, then fault o will not be detected
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Figure 2: Equivalence of Terminal Fault Pair

Table 1: Simulation at Dominator Gate for Figure 2

A[B[C | Good | Jo | Jo ] e
0010 0 00

o0fo]1 0 0| oo
0110 1 0| ot
01 {1 0 o|o]o
1{0]o 1 11o0]o
1o} 0 000
1]1]o0 0 o]l o}o
1{1 |1 0 o |o]o

by any primary input combination that assigns test; to the cone

inputs.

Proof Faults o and ~ produce identical values at the common
dominator gate for the vector test;. Consequently, for all the pri-
mary input combinations that assign test; to the intermediate cone
inputs, o and -y result in the same value at the common dominator
gate. All the fault effects from a and v go through their common
dominator gate. Therefore, for all the primary input combinations
that assign test;, both faults generate the same values on all the
primary outputs. Since < is redundant, fault o is not detected by
test;.

Two examples of the application of Lemma 1 to the identifi-
cation of equivalent faults are presented next. The first example
shows how Lemma 1 can be utilized to prove equivalence of faults
that are located at the terminals of a gate. The second example
shows how it can be applied to prove equivalence of faults on a
fanout stem and one of its branches.

Example 1 : In Figure 2, faults o and 3 share a common domina-
tor gate D. Faulty functions f. and fg at the dominator gate D are
evaluated in terms of the cone inputs A, B and C as shown in Table
1 (this cone was selected for the purposes of this example and may
not be the one selected by our procedure). The faulty functions
fa and fg have identical values at D for all the cone input com-
binations except for (1,0,0). For input combination (1,0,0), only
the fault effect of 3 is propagated to the dominator gate. Since re-
dundant fault v produces the same output value O at the dominator
gate for input combination (1,0,0), using Lemma 1, the mismatch
between a and 3 can be ignored because the fault effect of 8 will
not propagate to any primary output. Therefore, faults o and 3 are
equivalent. Here, the local circuit transformation and the associ-
ated test generation step needed in [2] are not needed for proving
equivalence.

Example 2 : Part of the circuit s35932f is shown in Figure 3.
We use it to illustrate the application of Lemma 1 to prove equiv-
alence of faults on a stem and one of its branches.. Stem fault o
and branch fault 3 are evaluated at the dominator gate G11431 as
shown in Table 2. Faults «y and ¢ are redundant faults at the fanout
branches of stem G10935. According to Table 2, for input combi-
nation (1,0,0) and (1,0,1), faults o and 3 result in different values
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Figure 3: Equivalence at Reconvergent Stem

Table 2: Simulation at Dominator Gate for Figure 3

G11349 | G10903 | G10851 | Good | Fa | a2 1 o | o
0 0 0 1 0011
0 0 1 1 oo 1 {1
0 1 0 0 ofolo]o
0 1 ] 0 olofol}o
I 0 0 1 ol 1 ]o |
1 0 1 0 1 [ o] o |
1 1 0 0 ololol}o
1 1 1 1 1 1 1 1

at the dominator gate. In both cases, only the fault effect of « is
propagated to the common dominator gate G11431. Since redun-
dant fault v produces an identical faulty value of 0 for combination
(1,0,0), and redundant fault § results in an identical faulty value of
1 for combination (1,0,1), using Lemma 1, the fault effects of o
for these combinations can be ignored. For all other input com-
binations, faults a and 3 produce identical values, hence they are
equivalent.
4 Static and Dynamic Evaluation

In this section, static and dynamic techniques are described that
find relations among inputs of the common dominator cone in or-
der to accelerate functional evaluation. The relations are used for
identifying cone input combinations that cannot be justified. This
will eliminate the need to simulate and justify them, and will re-
duce the time spent on evaluation.
4.1 Motivational Example

The fault pair considered here to illustrate the need for finding
relations among cone inputs is from the ISCAS85 benchmark cir-
cuit ¢7552. The common dominator cone has 10 inputs denoted
IN([0], IN[1], ..., IN[9]. The structural relations among these in-
puts are shown in Figure 4. Inputs IN[2] and IN[3] are structurally
related in such a way that a value 1 at IN[2] implies a value O at
IN[3]. Therefore, the combination (1, 1) at (IN[2],IN[3]) cannot
be justified by any primary input combination. Hence, any vec-
tor at the dominator cone inputs with (1, 1) at (IN[2]L,IN[3]) is not
justifiable and can be skipped. The inputs IN[1] and IN[4] are
identical and combinations (0, 1) or (1, 0) at (IN[1],IN[4]) cannot
be justified. Similarly, combinations (0, 1) and (1, 0) at identical
inputs (IN[7],IN[9]) are not justifiable. The input IN[1] is the pre-
decessor of IN[0] and vectors containing (1,0) at (IN[OLIN[1])
or (IN[0],IN[4]) can be skipped. Out of 1024 test vectors at the
dominator cone, 880 vectors do not need evaluation because they
cannot be justified based on structural relations among the cone in-
puts. The reduced computation time allows functional evaluation
to be extended to larger cone sizes, and leads to the identification
of more equivalent pairs.

4.2 Static Structural Property Extraction

Motivated by the example above, two relations among the dom-
inator cone inputs are derived. First, predecessor-successor rela-
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Figure 5: Static Analysis (a) Predecessor Successor Rela-
tions (b) Successor Successor Relations

tions are determined, i.e., whether one dominator cone input is
a predecessor or successor of another input as shown in Figure
5(a). If the predecessor input IN[<] has a controlling value, c, and
the inversion of the gate is k, then the combination (c,c® k) on
(IN[:],IN[5]) cannot be justified. ’

The second relation between cone inputs is the successor-
successor relation, which occurs if two dominator cone inputs are
successors of other lines. In Figure 5(b), IN[7] and IN[7] are suc-
cessors of line L[1] (or lines L[1] and L{2]). If value; at IN[{]
implies value; at IN[5] then the combination (value;,value;) at
(IN[7],IN[451) cannot be justified.

We search for structural properties of dominator cone inputs
statically before starting the evaluation process. Extraction and
utilization of input relations is incorporated into the evaluation
procedure. During functional evaluation, a check is made to de-
termine whether the current vector is unjustifiable based on the
structural properties and can be skipped.

The relations obtained from the structural technique can also
be identified using static learning techniques [15). The advantage
of the structural technique is that it processes circuit information
locally, whereas the implications required in static learning [15]
may involve larger areas of the circuit.

4.3 Dynamic Justification and Property Extrac-
tion

Consider a vector at the dominator cone inputs that produces
different faulty values at the dominator gate output. Suppose that
the vector cannot be shown to be unjustifiable based on the infor-
mation derived during static analysis of the cone inputs. In this
case, we use the multiple backtrace procedure of FAN [13] to find
out if the vector is justifiable or not. The goal of dynamic justifica-
tion described in this subsection is to extract as much information
as possible from a vector that was already proved to be unjustifi-
able. Specially, our goal is to extract new relations among cone
inputs based on the unjustifiable vector.

When a cone input vector produces different faulty values at the
common dominator gate and cannot be justified, the vector is an-
alyzed to find a smaller set of inputs that are unjustifiable (if such
a set exists). For this purpose, we divide the inputs into different
groups and use binary search. Figure 6 shows the input partition,
which is used as follows. First, block 1 and block 2 are set to
the same values as the unjustified vector and all the other inputs
are set to the don’t care value (‘X’). The justification procedure is
then applied to this vector. If this vector is not justifiable, then we

Block 4 Block 2 Block 1

Block 3

Figure 6: Partitioning of a Test Vector
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Figure 7: Dynamic Justification Analysis

know that unique unjustifiable inputs reside in block 1 and block
2. These blocks are further partitioned into two groups to search
for an even smaller unjustifiable input set. If the vector defined
over blocks 1 and 2 is justified, then the other two-block combi-
nations, blocks (3,4), blocks (1,3), blocks (1,4), blocks (2,3) and
blocks (2,4) are processed in the same manner. When the 2-way
partitioning fails, 3-way partitioning is tried to find unjustifiable
input combinations in blocks (1,2,3), blocks (1,2,4), blocks (1,3,4)
and blocks (2,3,4). This technique can be extended to higher lev-
els of partitioning, but in most cases we were able to extract a
smaller unjustifiable input set with 2-way and 3-way partitions. In
the worst case, after 20 partitions, the smallest unjustified input set
obtained so far is returned or we abort the process.

Figure 7 illustrates the dynamic approach to extracting rela-
tions among the dominator cone inputs. The cone inputs for faults
a and B with respect to common dominator gate G2 are lines [,
Iz, I3, I4, Is and Ig. Let the fault free function at the dominator
gate be f, and let the faulty functions be f and fz. During eval-
uation, the faulty functions are computed for vector (0,0,0,0,0,0).
In Figure 7, we show the values obtained as tuples (G,a,3) where
G denotes the value of the good circuit, o denotes the value due to
fault o, and 3 denotes the value due to fault 3. The evaluation at
gate G2 shows that only fault « is propagated to the output of the
dominator gate. We use the multiple backtrace procedure of the
FAN [13] algorithm for justification. The procedure shows that
the vector (0,0,0,0,0,0) is not justifiable.

In order to find a smaller set of unjustifiable inputs, we par-
tition the inputs into four blocks, {I1], [{2, [3], [/4] and [Is, [s].
First, block 1 and block 2, i.e., [I1] and [I2, ]3] are set to the
same values as the unjustified vector and all the other inputs are
set to ‘X’. The justification procedure is then called with vector
(s, Is, I4, I3, 12, 1) = (X, X, X,0,0,0). This vector is unjus-
tifiable and we further partition the block /1, I2, I3] into [I1] and
[12, I5] and repeat the justification step with (X, X, X, X, X, 0).
The vector (X, X, X, X, X,0) is justifiable and justification is
tried for (X, X, X,0,0,X). This vector is unjustifiable, and
the smaller unjustifiable input set (/3,12) = (0,0) is found.
We cannot find smaller unjustifiable sets, therefore, this rela-
tion is stored, and simulation for subsequent vectors that match
(X,X,X,0,0, X) will be skipped. The evaluation phase again



produces a mismatch for the vector (1,0,0,1,0,0). If we decide
to perform dynamic justification, we will obtain unjustifiable in-
puts (Is, Is) = (1,0). Storing this relation, we will skip the re-
maining vectors that match (1,0, X, X, X, X).

When the number of remaining cone input vectors that need
to be checked is low, the overhead of dynamic justification ex-
ceeds the gain obtained from the extracted relations. To avoid this
and to obtain maximum benefit from dynamic extraction, we use
several guidelines. The dynamic extraction procedure is applied
only when the cone size is 12 or greater. The larger the cone size,
the larger the number of simulations and justifications that can be
skipped. The gain obtained from subsequent calls to dynamic ex-
traction decreases. Therefore, we set a limit of at most five calls
to dynamic extraction for each fault pair. Finally, we avoid dy-
namic extraction when the unjustified vector requires no or very
few backtracks.

5 Experimental Results

All the experiments reported in this section were executed on
a SUN Ultrasparc 2 workstation with 512 MB of memory. All
the ISCAS8S5 benchmarks and full scan versions of the larger IS-
CAS89 benchmarks were utilized in the experiments.

Fault Pairs Left Indistinguished after Applying a Fault
Detection Test Set

Diagnostic ATPG is typically applied only after a fault detec-
tion test set is available. Thus, identification of equivalent fault
pairs starts from the fault pairs left indistinguished by a fault de-
tection test set. We used the following process to find indistin-
guished fault pairs. First, redundant faults were removed from the
fault list, since all the redundant faults belong to the same equiv-
alence class and bias the number of indistinguished pairs. Then,
diagnostic fault simulation was performed using RAPSIM [16] to
obtain the indistinguished pairs. The test vectors used are com-
plete detection test sets [17,18]). Column 2 of Table 3 shows the
number of fault pairs that remain indistinguished after applying a
fault detection test set.

Following diagnostic fault simulation, we identified equivalent
fault pairs using the implication technique from [11}. The num-
ber of equivalent fault pairs identified by implications are shown
in column 3 of Table 3. Column 4 shows the run time for the
implication procedure, and indicates that a fraction of a second is
required for proving equivalence by implication. For example, it
takes less than 1 second to identify 1179 equivalent pairs in circuit
535932f.

Results with Static and Dynamic Extraction

Next, we use functional evaluation at common dominator gates
to identify additional equivalent fault pairs. In this experiment, we
do not use redundant fault information. We only consider fault
pairs for which we can find a common dominator gate, and for
which the dominator cone has at most 17 inputs. Results are pro-
vided in Table 3. Columns 5 and 6 show results of proving equiv-
alence without static or dynamic extraction. This is the evaluation
method proposed in [11]. The total number of fault pairs proved
to be equivalent is given in column 5. The next column shows the
total time for identifying equivalent fault pairs. Results using the
static and dynamic analysis techniques proposed here are given in
columns 7 and 8. Using static and dynamic analysis, we obtain an
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increase in the total number of faults identified as equivalent for all
the benchmarks except c499, c880, c1355 and s35932f. Among
these all the equivalent pairs of c499, c880 and c1355 are already
identified. The improvement obtained by static and dynamic anal-
ysis is due to the extraction of relations among cone inputs which
enable us to evaluate cones with 17 inputs within reasonable run
times compared to 10 inputs in the previous case [11]. For ex-
ample, in circuit s15850f, the total number of equivalent pairs
identified increases from 2268 to 2515, and time increases from
53 seconds to 138 seconds. Pairs proven equivalent through static
and dynamic functional evaluation take less than 140 seconds for
all the circuits. For example, a total of 8898 pairs in $35932f are
proved equivalent in less than 4 seconds.

To further demonstrate the advantages of using static and dy-
namic extraction, we considered circuit s15850 f using cones with
17 inputs under the previous evaluation method [11], and com-
pared the results to the results obtained using static and dynamic
extraction. The previous method {11] identified 2515 equivalent
fault pairs and took 367.6 seconds, while evaluation with static
and dynamic analysis identified the same 2515 equivalent fault
pairs but took only 138.1 seconds. The diagnostic test generator
DIATEST {1] took 318.2 seconds for the same fault pairs.

Results Using Redundancy Information

Results of the identification of equivalent fault pairs using re-
dundancy information are presented in the last two columns of Ta-
ble 3. Here we consider pairs left after applying the implication
technique [11] and the evaluation technique with static and dy-
namic analysis. Column 9 shows the total number of equivalent
fault pairs identified using redundancy information. The last col-
umn shows the total CPU time to prove these equivalences. For
535932 f, we identify 2048 equivalent pairs in approximately 402
seconds. All the equivalent pairs of c499, c880, c1355 and ¢5315
are already identified by the evaluation technique (with static and
dynamic analysis) and the implication technique {11].

The number of equivalent fault pairs identified by using all the
techniques proposed here are reported in Table 4 and compared
with several other results. Column 2 shows the number of equiv-
alent pairs obtained using the diagnostic test generation procedure
DIATEST [1]. Column 3 gives the number of pairs obtained pre-
viously [11] using implication and evaluation without utilizing re-
dundancy information or static and dynamic extraction. The next
column shows the total number of equivalent pairs found using
the implication technique [11], evaluation with static and dynamic
extraction and the redundancy based techniques proposed here.
Columns 5 and 6 show the number of equivalent pairs that were
not proved to be equivalent. Using the techniques proposed here
on top of [11], we achieve a considerable increase in the number
of equivalent fault pairs identified. It is observed that only a small
number of equivalent pairs remain unidentified and over 95.7% of
all the equivalent pairs are identified. Out of 12893 pairs, 12125
pairs of s35932 f are proven equivalent.

The remaining fault pairs cannot be identified as equivalent due
10 the following reasons. Some fault pairs cannot be identified due
to the large dominator cone size that needs to be considered. A
fraction of these pairs are far apart in the circuit and do not have a
single dominator gate, or the cone has more than 17 inputs. A few
faults exceeded the backtrack limit during justification, or primary
input combinations could be found to justify the necessary cone



Table 3: Equivalence ldentification Using Static and Dynamic Analysis and Redundancy Information

w/o Static & Dynamic Anal w/ Static & Dynamic Anal w/ Redundancy
Circuit Indist. | Impli. | Time Proven Time | Proven Time | Proven Time
Pairs Pairs | (sec) | Pairs[11] (sec)(11] Pairs J (sec) Pairs (sec)
c432 83 9 0.00 0 0.00 1 67.07 0 0.00
c499 2] 0 0.00 12 0.30 12 0.02 [} 0.00
c880 61 1 0.00 54 0.03 54 0.02 0 0.00
c1355 775 72 0.00 668 0.60 668 0.27 0 0.00
c1908 346 59 0.00 218 0.78 223 1.35 0 0.00
c2670 616 14 0.00 297 0.27 358 6.52 95 0.06
¢3540 574 73 0.00 398 5.28 409 2.09 31 0.06
c5315 537 8 0.00 432 3.38 439 1.32 0 0.00
c6288 1327 0| 000 930 0.45 945 0.35 16 0.00
c7552 1210 7 0.00 864 1.23 944 1.22 137 0.10
$5378f 550 8 0.00 479 2.72 489 4.53 4 0.07
$9234f 1370 41 0.00 957 4.63 1100 61.49 32 3.54
s13207f 2064 64 0.03 1638 9.47 1758 84.8 30 1.32
s15850f 2842 49 0.03 2268 52.83 2515 138.12 111 46.43
$35932f 12899 1179 0.98 8898 5.07 8898 3.82 2048 | 401.57
538417 4401 182 0.17 3076 8.04 3121 14.74 4 0.96
s38584f 2797 68 0.05 2261 7.73 2435 23.15 89 5.55

input vectors (this means that faults are indistinguishable because
they cannot be propagated to different outputs).

Table 4: Overall Equivalence Identification

Circuit Equiv. Proven | Proven | Remaining | Remaining l
J Pairs | Pairs [11] Pairs Pairs [11] 1 Pairs
c432 13 9 10 4 3
c499 12 12 12 0 0
c880 55 55 55 0 0
c1355 740 740 740 0 0
<1908 295 277 282 18 13
c2670 468 311 467 157 1
c3540 531 471 513 60 18
c5315 447 440 447 7 0
6288 1013 930 961 83 52
7552 1118 871 1088 247 30
s5378f 523 487 501 36 22
$9234f 1229 998 1173 231 56
513207f 2043 1702 1852 341 191
s15850f 2789 2317 2675 472 113
535932 12893 10077 12125 2816 768
$38417f 3361 3258 3307 103 54
538584f 2696 2329 2592 367 104

Table 5 shows the execution time compared to DIATEST [1].
The run time shown here for DIATEST is obtained on the same
SUN workstation we use for identifying equivalent fault pairs,
and DIATEST is applied only to the faults identified as equiv-
alent by the procedure of this paper. The results show that the
presented technique is significantly faster in identifying equivalent
fault pairs. For s35932f, the approach of this paper takes 7 min-
utes whereas DIATEST takes over two hours and 22 minutes for
the same pairs.

Next, we demonstrate the improvement in the total diagnostic
test generation time due to the proposed procedure. For this pur-
pose, the equivalent fault identification tool is used at the front end
of the DIATEST diagnostic test pattern generator [1]. The results
are shown in Table 6. Column 2 in Table 6 gives the number of
indistinguished pairs after applying the complete fault detection
test set. Column 3 shows the total number of pairs proven equiv-
alent by the technique of this paper. Time ¢, is the time required
for findiing equivalent fault pairs. Time ¢, is the time required by
DIATEST for the remaining pairs and for diagnostic test genera-
tion. The total time for DATPG using the new approach is t, + t.
The total time (without using our tool) required by DIATEST[1] is
given in the next column. The last two columns show the savings
obtained in DATPG time here and in the previous case [11]. For

Table 5: Comparison with DIATEST in Identifying Equivalences
[ Circuit_] Proven Pairs | DIATEST (sec) | Ours (sec) |

c432 10 7.4 67.1
c499 12 0.8 0.0
c880 55 0.4 0.0
c1355 740 12.1 03
c1908 282 50 14
€2670 467 317.6 6.6
c3540 513 17.9 2.2
c5315 447 378 1.3
c6288 961 427 0.4
¢7552 1088 107.8 1.3
s5378f 501 15.7 4.6
$9234f 1173 3337 65.0
s13207f 1852 165.8 86.2
s15850f 2675 345.3 184.6
$35932f 12125 8569.8 406.4
s38417f 3307 1117.0 159
s38584f 2592 |. 3278.8 28.8

¢2670, savings of 2.1% reported previously [11] are increased to
96.8%. For $35932, the savings increase from 46.0% to 79.9%.
In a few circuits, we see a decrease in savings in DATPG time
compared to the previous case [11]. For these circuits, the sav-
ings are lower because of the additional time it takes to identify
additional fault pairs, but still the savings are significant compared
to DIATEST. Savings of up to 89% are obtained for the largest
benchmarks and the average for all the circuits is 62% compared
to the previous [11] average savings of 48%. )
6 Summary

Techniques were introduced to identify functional equivalence
utilizing redundancy information during faulty function evaluation
at common dominator gates. We derived conditions under which
the effect of a fault propagated to the dominator gate could be ig-
nored and justification for the cone input vector could be avoided.
Static and dynamic techniques were developed to find relations
among dominator cone inputs. Precomputed structural relations
and extracted justification properties were used to reduce simula-
tion time. It was shown that utilizing these techniques, we were
able to rapidly identify most of the equivalent faults in benchmark
circuits and obtain significant savings in diagnostic test pattern
generation time.

The procedure described here can be improved by considering
forward justification during functional evaluation, i.e., by show-
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Table 6: Savings in Total DATPG Time

| Circuit | Indist. l Proven tp tr | tp +t»r | Total(sec) I datpg | datpg [11] |
Pairs Pairs (sec) (sec) (sec) DIATEST savings savings
c432 83 10 67.1 274.7 3418 346.1 1.3% 0.03%
<499 21 12 0.0 0.2 0.2 1.0 80.0% 40.0%
c880 61 55 0.0 0.1 0.1 05 80.0% 60.0%
c1355 775 740 0.3 1.0 1.3 13.1 90.1% 89.3%
<1908 346 284 14 34 48 84 42.9% - 45.2%
c2670 616 467 6.6 37 10.3 3213 96.8% 2.1%
c3540 574 513 22 4.5 6.7 224 70.1% 42.0%
c5315 537 447 13 29 42 407 89.7% 79.1%
c6288 1327 961 04 147 15.1 574 73.7% 70.2%
c7552 1210 1088 1.3 88.4 89.7 196.2 54.3% 31.5%
s5378f 550 509 4.6 49 9.5 20.6 53.9% 64.6%
$9234f 1370 1182 65.0 1783.8 1848.8 21174 12.7% 6.3%
s13207f 2064 1857 86.2 85.2 168.7 2482 32.0% 49.7%
s15850f 2842 2677 184.6 1310 315.6 476.2 33.7% 45.3%
$35932f 12899 12893 | 4064 | 1652.9 2059.3 10222.7 79.9% 46.0%
$38417f 4401 3312 159 3337 349.6 1450.7 75.9% 70.2%
$38584f 2797 2620 28.8 353.7 3825 3632.5 89.5% 77.7%

ing that the mismatch produced by two faults at the dominator
gate cannot be propagated to any of the primary outputs. In the
current implementation, the presence of redundant faults allows
us to indirectly derive information about forward propagation. In
the absence of redundant faults, we use backward justification to
show that a cone input vector which produces different values at
the dominator gate cannot be justified by any primary input com-
bination. It may also happen that backward justification alone is
unable to resolve the discrepancy at the dominator gate, i.e., the
cone input vector which produces different values for two faults
is justifiable by the primary inputs. In such a case, we will need
forward processing to prove that the mismatch does not propagate
to any primary outputs. From our experiments with benchmark
circuits, we found that this occurs only in a small number of cases.
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