A GRAPH TRAVERSAL BASED FRAMEWORK FOR SEQUENTIAL LOGIC
IMPLICATION WITH AN APPLICATION TO C-CYCLE REDUNDANCY IDENTIFICATION

Jian-Kun Zhao, Jeffrey A. Newquist and Janak H. Patel

Coordinated Science Laboratory/ECE Dept.
University of Illinois at Urbana Champaign, Urbana, IL-61801.

ABSTRACT

This paper presents a new graph traversal based framework for se-
quential logic implication called GRAPH_SIMP. Due to the pro-
hibitive time and space cost, few previous work target the dis-
covery of sequential indirect implications that span multiple time
frames. By using an efficient graph data structure and incorporat-
ing a graph reduction step into the implication generation process,
our approach provides an efficient support for sequential implica-
tion. Sequential logic implication has many useful applications,
one of which is sequentially redundant fault identification. We
show that sequential implications found by GRAPH_SIMP allow
us to find more sequential redundancies than previously reported.
Results of testing our implication algorithm against ISCAS89 cir-
cuits show that high implication coverage is essential to identifying
redundant faults.

1. INTRODUCTION

A number of different digital circuit analysis problems need to
know the effects of asserting various logic values throughout a
circuit: automatic test pattern generation (ATPG) (1], (2], [3],
[4], untestable fault identification [5], [6], circuit optimization [7]-
[10], and design verification [11]. Various solutions exist, and can
be grouped into two major classes: static learning [1] and dy-
namic learning. In the context of logic circuits, learning refers
to capturing the functional behavior of the circuit to more easily
solve a given problem. Static learning algorithms are applied as
a preprocessing step; in contrast, dynamic learning algorithms are
performed as part of the circuit analysis procedure (e.g., during
ATPG). In either case, logic implications are discovered and used
to solve the various analysis problems.

A number of papers have dealt with implication algorithms
[1] -[4], [10]-[15]. These algorithms are either structural based
or Boolean satisfiability (SAT) based models. Kunz and Pradhan
proposed a complete implication algorithm called recursive learn-
ing [15], which gurantees to find all necessary assignments under
a partial set of node values. However, in practical implementation,
the depth of recursion must be restricted to keep the time and space
expense with reasonable bounds. As a result, some implications
may not be found. In [14], Stoffel et al. proposed an implication
engine which models recursive learning by AND-OR reasoning
graphs. The working principle of AND-OR graph is the same as
that of recursive learning in that both of them derive indirect im-
plications by set intersection operation. Another graph-based im-

This research was supported in part by the Semiconductor Research
Corporation under contract SRC 96-DP-109, in part by DARPA under con-
tract DABT63-95-C-0069, and by Hewlett-Packard under an equipment
grant.

0-7695-0831-6/00 $10.00 © 2000 IEEE

163

plication engine proposed by Tafertshofter [16] inherits the char-
acteristics of both structural based model and SAT based model.
Their implication engine derives indirect implications through set
operation and law of contraposition, which are considered as two
major current techniques to discover indirect implications.

In this paper we propose a new graph-based implication frame-
work which is efficient in terms of both time and space. We focus
on discussing the construction phase of this implication engine,
which can be viewed as a static learning procedure. Compared
with dynamic learning, static learning has several advantages. Dy-
namic learning is typically applied in the context of an ATPG,
or other analysis algorithm, during branching steps. Implications
found in dynamic learning are only valid under a specific situation
of assignments, which limits the scope of discovered implications
and causes common implications to be re-learned in another situ-
ation. In contrast, implications found through static learning are
valid in all branching situations. By using statically learned im-
plications, a branch-and-bound algorithm will spend considerably
less time backtracking from incorrect decisions. Moreover, it is
usually expensive to discover indirect implications during dynamic
learning, whereas many indirect implications, especially those uni-
lateral indirect implications[2], can be easily found in static learn-
ing . Since indirect implications play a critical role in many pro-
cesses, it is of utmost importance to perform static learning as a
preprocessing phase in many applications.

Our approach distinguishes from previous approaches in sev-
eral aspects. First, few previous papers discuss sequential indirect
implication that may involve multiple time frames. Even though
some of the implication algorithms proposed before may be ap-
plied to sequential circuits, the implication engines used are main-
ly combinational and sequential indirect implications that span
multiple time frames are not targeted. The reason for this may
lie in the prohibitive time and space costs. The implication algo-
rithm proposed here fully supports sequential indirect implication
as well as combinational indirect implications. Experimental re-
sults show that the execution time spent by our algorithm is within
reasonable bound. A second characteristic of our implication al-
gorithm is the small memory space requirement, considering the
huge number of indirect implications found. Usually, indirect im-
plications are either put in external data structures or included into
the implication engines. Neither of the two ways outperforms the
other in saving storage space for indirect implications. Our exper-
iments show that an extremely large number of sequential indirect
implications can be derived in static learning, which causes storage
space issue if no explicit measures are taken for space reduction.
Our algorithm overcomes this issue by incorporating a graph re-
duction procedure into the construction process of the implication

engine. This graph reduction approach significantly reduces the

space consumption, making sequential implication a feasible and

attractive tool to apply in many applications.

Indirect implications are very useful in many processes, such
as logic optimization[10], logic verification[17], ATPG{2], and re-
dundancy identification [5], [6], [7], {18]. In the later part of this
paper, we present an application of our implication algorithm to
sequential C-cycle redundancy identification using the FIRES al-
gorithm proposed by Iyer et al.[6]. We also propose an efficient
procedure called STEM_ANALYSE, to do the unobservability val-
idation on stems, which is a critical step in FIRES. Applying the
results of our implication algorithm, we achieved better results in
sequential redundancy identification than the original FIRES did.

The rest of the paper is organized as follows. Section II dis-
cusses the basic concepts and data structures supporting the im-
plication algorithm, Section III presents the implication algorithm,
Section IV describes an application of the implicaton algorithm —
C-cycle redundancy identification, Section V gives the experimen-
tal results, and Section VI concludes the paper.

2. BASIC CONCEPTS AND DATA STRUCTURES

2.1. Basic terms and concepts

We first define a few terms that will be used frequently throughout
the algorithm description.

1. [N,wv,t]: assign logic value v to node N in time frame ¢;
(In combinational circuits, ¢ is ignored. The default value
fortis0.)

2. [M,w] — [N, v,t]: assignning value w to node M in the

- current time frame (time frame Q) implies another assign-
ment: value v on node N in time frame t.

3. impl[N,v,t]: set of implications resulting from setting no-
de N in time frame ¢ to value v. In case ¢ is not specified,
impl|N, v] represents the set of implications resulting from
setting node IV in the current time frame to value v.

Time frames are bounded by D flip-flops and the current time
frame is always time frame 0. When implication is propagated
across a D flip-flop, the time frame will be incremented or decre-
mented correspondingly. For description convenience, for com-
binational circuits, the time frame part is omitted in assignment
representation. For example, assignning value 0 to node A in a
combinational circuit is represented as [A, 0] instead of [A, 0, 0].

For sequential circuits, static implication procedure is perfor-
med on all assignments in the current time frame (time frame 0).

The following laws are used in the implication generation pro-
cess:

1. Implication set for an assignment in time frame ¢:
impl[N,v,t] = {{M,w,t +t] | [M,w,t'] € impl[N,v]};

Forward implication: If all the input values of a gate are
known or one of the inputs is at the controlling value of
the gate, then the output value of this gate can be uniquely
determined from its input values. For example, for an AND
gate, if one of the inputs is set to 0, then the output is 0; if
all of the inputs are set to 1, then the output is 1.

3. Backward implication: Suppose we are generating new im-
plications of [N, a]. Let G be an unjustified gate in time
frame ¢ with m unspecified input nodes .S; and a specified
output node Y, in the current implication set of [NV, a]

164

if G is an AND gate:

if [Y, 0] € empl[N, a],

impl[N,a] = impl[N,a] U (., impl[S;,0,1])

if [Y,1] € impl[N, a},

impl[N, a] = impl[N,a] U (], impl[S;,1,1])
If Y = 1, then all gate inputs are 1, and we can add the
implications of setting these inputs to 1 to our list of im-
plications. If Y = 0, we find implications resulting from
setting each input to 0, and since at least one input must be
0, we add the common implications found. impl[S;, 0/1,]
can be derived using the first basic law described above.
if G is an OR gate:

if [Y,1] € impl[N, a],

impl|N, a] = impl[N,a] U (N, impl[S:, 1, t])

if [Y,0] € impl[N, a),

impl[N, a] = impl[N, o} U (U]~ impl[S;, 0, t])
Extended backward implication: For gate G in time frame
t with m unspecified input nodes S; and a specified output
node Y,
if G is an AND gate:
if [Y,0] € impl[N,a] and [Y,0] is unjustified by gate in-
puts S;, then
impl[N, a] = impl[N, a]u

(N, Forward Imply(impl[N,a] U impl[S;,0,t]))

Forward_Imply is a procedure performing forward im-
plications on a set of node assignments.
if G is an OR gate:
if [Y,1] € impl[N,a] and [Y, 1] is unjustified by gate in-
puts S;, then
impl[N, a] = impl|N, a]U
(Mi~, Forward Imply(impl[N, a] Uimpl[S;, 1, t]))

5. Transitive law: If [M,w] — [N,v,t1] AND [N,v] —
[L,y,tz2], then [M,w} — [L,u,t1 + t2]. In set notation,
if [N,v,t1] € impl[M,w] and [L,y,tz] € impl[N,v],
then [L,y, t1 + t2] € impl[M, w].

6. Contrapositive law: If [M,w] -— [N, v,t], then [N,7] —
(M, @, —t]. In set notation, if [V, v, t] € impl[M, w], then
[M,w, —t] € impl[N,7}. This law enables the algorithm
to discover unilateral indirect implications {2].

7. Conflicting assignments:

If [M,w] — [N,v,t] AND [M,w] — [N,7,t], then

[M, w)] is an impossible setting.

In other words, M will permanently hold the value w. This
law enables the algorithm to detect those nodes with con-
stant values. Our algorithm includes conflict checking. If
conflicts are not checked, the false values will create many
useless new implications during execution of the algorithm,
thus affecting the performance.

The contrapositive law discovers at trivial cost many indirect
implications that would cost at least one recursion depth to be dis-
covered using recursive learning approach {15].

Extended backward implication further discovers some indi-
rect implications that cannot be discovered by simply applying the
transitive and contrapositive laws.

2.2. Data structure — implication graph

a. Graph representation
A directed graph is used to represent the implication relation-
ship in the circuit. We call this graph implication graph. Each

Merge cycle M=
. {D=1,C=0,E=1} 2

Edge (A=0, M) is implied
by transitivity of edges

Figure 1: A graph reduction example.

graph node corresponds to a circuit node assignment. Each di-
rected edge represents an implication. In implication graphs of se-
quential circuits, each edge has a weight that indicates the time dis-
tance (i.e. the number of time frames) that this implication spans.
Figure 2 shows an example of the implication graph of a sequential
circuit.

The weight of edge is an integer. Its range depends on the time
frame constraint of the implication procedure. In our implementa-
tion, we restrict the implication propagation within 21 frames (10
backward time frames, 10 forward time frames, and the current
time frame). So the edge weight ranges from -10 to 10.

The transitivity nature of the implication relationship is also
reflected in the implication graph. For example, in Figure 2, since
[{A,0] — [B,1,2] and [B,1] — [D,1,7], implication [4,0] —
[D, 1, 9] can be derived by transitive law. Therefore we define the
implication relationship in an implication graph as follows:

Definition ¥ Graph node A implies graph node B with time dis-
tance t if there exists a path of length t from A to B in the impli-
cation graph.

b. Graph reduction

By transitive law the implications of a circuit node assignment
(i.e. a graph node) can be collected by traversing from the corre-
sponding graph node, in other word, the implications are contained
in the transitive closure of the graph node. Therefore, this graph
representation has great potential in reducing the storage space for

Figure 2: An implication graph example.

165

implications, by deriving the simplest version of the implication
graph without changing the transitive closure of the graph. This
procedure is known as transitive reduction [19] and defined as fol-
lows:

Definition 2 A transitive reduction of a directed graph G = (V, E}
is defined to be any graph G’ = (V, E’) with as few edges as possi-
ble, such that the transitive closure of G’ is equal to the transitive
closure of G.

Transitive reduction can be done in a much easier way if the
graph is acyclic. However, this is not the case for the implication
graph discussed here, in which there may exist many cycles or
strongly connected components. A strongly connected component
actually forms an equivalence class, in which all nodes are mutu-
ally implied and therefore equivalent in the sense of logic impli-
cation. So we first identify those strongly connected components,
merge them into single nodes, and then perform the transitive re-
duction procedure on the graph. As an example, Figure 1 shows
how the implication graph in Figure 2 is reduced to its simplest
version.

Algorithms invloved in this 3-step reduction procedure will be
discussed in detail in a seperate section later.

c. Graph traversal

The implications of a node assignment reside in the transi-

tive closure of the corresponding graph node and are collected by
traversing from the graph node. Therefore, graph traversal is a key
step in the implication procedure. There are two major ways to
traverse a graph: depth first search (DFS) and breadth first search
(BFS). In this work, depth first search is used in traversal.
d. Graph initialization Graph initialization is performed at the
beginning of the static implication procedure. It is a procedure
that maps the functions of the circuit elements to a graph represen-
tation. There are two major things done in this procedure

. Create the graph nodes. Each node represents a circuit node
assignment.

. Add the direct implications local to the gates in the circuit.

Since the purpose of the graph approach is to reduce memory
space consumption, transitively implied edges should be avoided
as early as in the initialization phase. Figure 3 shows an example of
graph initialization. The original circuit is shown in Figure 3(a),
and the initial version of the implication graph, using only local
implications, is shown in Figure 3(b).

\ transitive closure —

in the current gra / new implication

(c) implication generation on d=1

Figure 3: A graph initialization example.

e. Implication generation The implication engine searches for
new implications by iteratively performing forward and backward
implications. Forward implication is incorporated within the graph
traversal procedure. Figure 3(c) shows an example of how forward
implication is performed in graph traversal. In Figure 3(c), impli-
cation is currently performed on [d, 1]. The current implication set
of [d,1], {[d,1,0],[b,1,0],[b,1,1],{a,1,0],[e, 1,0}, [f,0,0]}, is
contained in the transitive closure of [d,1]. [d,1,0] and [e, 1, 0]
are both present in the current implication set. Therefore (f,0, 0}
is learned by evaluating the NAND gate in the circuit. In our im-
plementation, the evaluation procedure is event-driven, i.e. evalua-
tion on a gate is performed when the number of inputs with known
values reaches the threshold value that make the gate ready for
evaluation. For common gate types, such as AND and OR, the
threshold value is the number of gate inputs instead of 1, since
controlling value propagation is refiected in the initialized graph.
The forward implication procedure basically does graph traver-

166

sal while keeping an eye on circuit nodes ready for evaluation and
adding new implications to the graph conditionally. Also, the con-
trapostive law is applied whenever a new implication is added to
the graph. Many indirect implications are discovered through this
way at trivial time cost. Graph traversal combined with forward
implication can also be viewed as an independent dynamic learn-
ing procedure.

3. THE ALGORITHMS

In this section we outline several major procedures involved in this
graph-based static implication algorithm. This algorithms is called
GRAPH_SIMP. Details of the algorithm are found in our tech-
nical report [21].

The algorithm is iterative, with each iteration it adds new im-
plications. In each main iteration, graph reduction is first per-
formed and then new implications are generated. Implication pro-
cedure consists of forward and extended backward implication op-
erations as defined in previous section. Garph reduction consists
of two major steps: strongly connected component identification
and merging of these nodes into a single node, and removal of
transitively implied edges. In our implementation, in merging a
strongly connected component, one node in the component is se-
lected as the representative of the component, and all incoming
and outgoing edges of the nodes in the component are hooked to
this representative. The original nodes within the component are
then kept in a seperate record. During graph traversal, if a merged
node is reached, the original nodes in the component are visited
first and then traversal proceeds from the representative node.

To simplify the problem, only the combinational strongly con-
nected components , i.e. those strongly connected components in
which there is a path of length O between each pair of nodes, are
identified and merged.

4. SEQUENTIAL REDUNDANCY IDENTIFICATION
USING SEQUENTIAL IMPLICATIONS

One useful application of sequential implication is sequential re-
dundant fault identification. Our previous work [20] illustrated that
applying our algorithm SIMP (a combinational implication algo-
rithm) to FIRE[5] , (a combinational redundancy identifier) finds
more combinational redundancies than reported in [5]. In this sec-
tion, we briefly review FIRES, a sequential c-cycle redundancy
identifier, developed by Iyer et al.[6].

Definition 3 A c-cycle redundant faull, is a fault for which no test
sequence exists after powering up the faulty circuit and applying c
clock cycles[6].

The FIRES algorithm proposed in [6] is a fault-independent
redundancy identification algorithm for sequential circuits. Itiden-
tifies faults which require a conflict on a stem (a gate with two or
more fanouts) as a necessary condition for detection. Since a node
in a circuit can only achieve one value at a time, these faults are re-
dundant. The algorithm works by first applying a ‘0’ to a stem and
collecting faults which are either not activated or not propagated.
Unactivated faults are found through implication analysis. Un-
propagated faults are found by finding unobservable lines caused
by controlling values. Then the algorithm applies a ‘1’ to the stem
and determines faults which are not activated or not propagated in
the same manner. Common faults between the two tests are the

FIRES()
S untestable = SMPLY;
For each circuit node N
[Sequentially imply on N=0

S o= all lines that become uncontrollable or unobservable
under assignment N=0;

Sequentially imply on N=1

S | = all lines that become uncontrollable or unobservable
under assignment N=1;

L S untestable = Suntestable U SoN S

Figure 4: FIRES procedure.

redundant faults. The outline of the FIRES algorithm is shown in
Figure 4.

We applied our implication results to FIRES. One important
issue involved in fault collection in FIRES is unobervability vali-
dation for those stems that have all fanouts marked unobservable
during the fault collection. As we know, a stem maybe observable
even if all its fanouts are unobservable due to the fact that the faulty
effects may be propagated onto multiple fanout branches and then
reconverge, making the fault on the stem observable. This is also
known as multiple path sensitization issue and often happens on
reconvergent gates.

In FIRES, the unobservability propagates backward onto a st-
em s® (the copy of line s at time 1) if

1. All fanouts of s* are marked as unobservable at time 3.

2. For évery fanout f* of s°, there exists at least one set of
lines {p'}, such that

. f* is unobservable because of uncontrollability indi-
cators on every line in {p’}; and

. there is no sequential path from s*,i <k <j, toany
line in {p*}.

Stem unobservability validation in FIRES aims to verify there
is no sequential path from the stem in previous time frames to any
line in {p'} in the present time frame. The original paper didn’t
give the concrete implementation of this validation step. As we
think this validation step plays a critical role in the fault collection
— it determines whether the unobservability can be progapated
further backward, we present our approach here. We solve this
problem in a conservative way by not using backward propagation.
Our method through forward analysis filters out those stems that
have any chance to be observed. This approach guarantees that af-
ter filtering, the remaining stems are unobservable. Our sequential
stem analysis procedure similar to combinational stem analysis. It
marks s* (i < k) and their fanouts as “affected” and proceeds
the analysis forward in increasing order of circuit level and time
frame. It also distinguishes between the nodes affected by stem s'
and the nodes affected by the same stem s* (k > ©) in subsequent
time frames so as to terminate the procedure when the faulty effect
on s cannot be propagated further. .

We also applied our implication results to FUNTEST[22], a
sequential untestable fault identifier based on the single fault ATPG
theorem provided in [23]. FUNTEST is simliar to FIRES in struc-
ture. The main

167

difference between them is that FUNTEST doesn’t cross the
time boundaries in fault collection whereas FIRES does. We also
achieved better results than reported in [22].

5. EXPERIMENTAL RESULTS

This section presents the experimental results for ISCAS89 se-
quential benchmark circuits. Both the proposed sequential circuit
implication algorithm and the sequential redunancy identification
procedure were implemented in C++. Experiments were run on an
HP 9000 workstation.

Table 1 shows the results of our static sequential implication
algorithm GRAPH_SIMP. For each circuit, the total number of im-
plications that can be derived from the generated implication graph
(#impl.), the actual number of edeges in the graph (#edge),
the maximum edge weight in the graph (max |edge weight|), the
number of graph nodes in the original graph right after initializa-
tion (#nodes(original)), the number of graph nodes after equiva-
lence merging (#nodes(after merging)), the number of constants
(#Cons.) identified, and the CPU time are shown. Constants are
not counted as implications in these results. We do not discrimi-
nate between stems and fanout branches; therefore, they are con-
sidered to be the same node. Compared with our previous work
which stores the implications for each node in a seperate set, the
memory consumption is very low for this graph-based implication
engine. The percentage reduction can be approximated by
(#impl+#nodes(original))~(#edge+#nodes(aftermerging))

#impl+#nodes(original)
In this experiment, the percentage reduction ranges from 92.3% to
99.6%.

max |edge weight| indicates the maximum time offset of the
implications shown in the graph (nor including those implied edg-
es). In our implementation, we restrict the implication propagation
within 10 backward and 10 forward time frames. It is interesting to
see that quite a few circuits have maximum edge weight of 10 even
after transitive reduction. The maximum edge weight for these
circuits may go even beyond 10 if we set the time offset contraint
larger.

Table 2 compares the results of applying our static implica-
tion resulits to FIRES and the results of the original FIRES imple-
mentation. The number of c-cycle redundancies identified by each
procedure, the number of 0-cycle redundancies, and the maximum
¢, are shown in the table for each circuit. Again, the large num-
ber of implications found by our implication algorithm leads to the
superior performance over the orginal FIRES.

Table 3 compares the results of applying our static implication
results to the FUNTEST procedure and the results of the original
FUNTEST implementation. The number of untestable faults iden-
tified by each procedure is shown in the table for each circuit. ”-”
represents “data not available”, i.e. result for the corresponding
circuit was not reported in [22]. Again, the large number of im-
plications found in the static learning phase leads to the superior
performance over the orginal FUNTEST.

6. CONCLUSION

This paper has presented a new graph-traversal based framework
of sequential implication for use in many applications such as c-
cycle redundancy identification. By iterative method, contraposi-
tive law, and extended backward implication, our implication pro-
cedure discovers at low cost a large number of indirect implica-

Table 1: Graph-based static implication results on ISCAS89 circuits

max #nodes #nodes
’ Ckt , #impl. | #edge | |edge weight| | (original) | (after merging) | #Cons. ‘ time]
5208 39588 1227 10 246 158 0 13.6s
5298 19238 891 8 284 158 3 1T.1s
s344 14682 947 4 390 236 5 1.8s
$349 14682 947 4 392 236 6 1.9s
§382 53085 1875 10 376 226 0 137.3s
5386 32574 1255 3 358 234 3 12.0s
5400 58799 1977 10 388 234 1 150.2s
5420 262565 3618 10 506 334 0 99.6s
s444 74353 2419 10 422 254 2 252.3s
s510 44916 2932 4 486 408 0 31.3s
$526 50054 2122 10 446 286 1 83.4s
5641 64866 1576 10 914 310 0 1.0s
s713 66432 1726 10 940 310 16 1.6s
s820 62058 3040 3 662 472 0 43.3s
$838 1310185 8569 10 1026 686 0 695.3s
s953 244118 5061 4 926 706 0 87.3s
s1196 73562 5141 1 1150 836 0 10.2s
s1238 74764 5745] 1108 912 0 2.6s
s1423 143198 4851 10 1506 1072 0 67.4s
s1488 154286 10066 2 1372 1076 0 146.4s
51494 154550 10049 2 1360 1090 0 162.8s
s5378 2899860 11476 10 6084 1711 404 1347 4s
$9234 4531017 25229 10 11766 3818 26 5.5h
513207.1 8146713 41780 10 17748 5509 296 3.7h
s15850.1 15604841 50208 10 21092 7486 76 2.0h
535932 10866538 98047 3 36296 26846 0 3.8h
s38417 29811195 106218 10 48334 19339 131 7.5h
$38584 | 54544728 | 165901 10 42350 23739 254 7.5h

tions. To prevent the storage space requirement for the large num-
ber of indirect implications found from becoming the bottleneck of
this implication algorithm, a graph reduction step, which consists
of equivalence class merging and transitive reduction, is incorpo-
rated into the implication generation process.

To show the efficiency of this algorithm, the static implication
results were applied to sequential c-cycle redundancy identifica-
tion. Incorporating the implication algorithm proposed here in the
c-cycle redundant fault identification achieved better results than
previous work[6].

The implication framework proposed in this paper can also be
applied to circuits with tri-state elements. The flexible structure
of this framework allows easy extension to circuits with new gate

types and multiple-value logic. Our implication algorithm can be
efficiently applied to many other processes as well as redundancy

identification. In our future work, we will investigate the effects of
including this implication engine into ATPG and logic verification.

7. REFERENCES

[1] M. Schulz and E. Auth, “Improved Deterministic Test Pattern Gener-
ation with Applications to Redundancy Identification,” IEEE Trans-
actions on Computer-Aided Design, vol. 8, pp. 811-816, July 1989.

{2] W. Kunz and D. Pradhan, “Accelerated Dynamic Learning for Test
Pattern Generation in Combinational Circuits,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
vol. 12, pp. 684-694, May 1993,

{31 M. Schulz, E. Trischler, and T. Sarfert, “SOCRATES: A Highly Effi-
cient Automatic Test Pattern Generation System,” IEEE Transactions
on Computer-Aided Design, vol. 7, pp. 126-137, Jan. 1988.

[4] S.Chakradhar, V. Agrawal, and S. Rothweiler, “A Transitive Closure
Algorithm for Test Generation,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 12, pp. 1015—
1028, July 1993.

M. lyer and M. Abramovici, “FIRE: A Fault-independent Combina-
tional Redundancy Identification Algorithm,” JEEE Transactions on
VLSI Systems, vol. 4, pp. 295-301, June 1996.

[6] M. lyer, D. Long, and M. Abramovici, “Identifying Sequential Re-
dundancies without Search,” in Proceedings of the 33rd Design Au-
tomation Conference, pp. 457462, 1996.

[7] P. Menon and H. Ahuja, “Redundancy Removal and Simplification
of Combinational Circuits,” in Proceedings of IEEE VLSI Test Sym-
posium, pp. 268-273, 1992.

{8] L.Entrena and K. Cheng, “Combinational and Sequential Logic Op-
timization by Redundancy Addition and Removal,” [EEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 14, pp. 909-916, July 1995.

[91 M. C. D. Pradhan and W. Kunz, “LOT: Logic Optimization with
Testability — New Transformations Using Recursive Learning,” in
Proceedings of IEEE International Conference on Computer-Aided
Design, pp. 318-325, 1995.

[10] W.Kunz and P. Menon, “Multi-level Logic Optimization by Implica-
tion Analysis,” in Proceedings of IEEE International Conference on
Computer-Aided Design, pp. 613, 1994,

{11} W. Kunz, D. Pradhan, and S. Reddy, “A Novel Framework for
Logic Verification in a Synthesis Environment,” IEEE Transactions
on Computer Aided Design, vol. 15, pp. 20-32, Jan. 1996.

{12] J. Rajski and H. Cox, “A Method to Calculate Necessary Assign-
ments in Algorithmic Test Pattern Generation,” Proc. IEEE Int. Test
Conf., pp. 25-34, Sept. 1990.

&
2

168

Table 2: Results of c-cycle redundancy identification

| ‘| FIRES[6] [w/ GRAPH_SIMP |
Circuit || Red. | (sec) | O-cycle | Max. ¢ || Red. | (sec) [O-cycle [Max. c |
$298 - - - - 3 0.2 2 1
s344 - - - - 5 0.2 4 1
$349 2 0.3 2 0 7 0.2 4 1
$382 - - - - 4 0.4 3 1
5386 27 0.6 0 2 60 0.4 60 0
5400 1 1.2 0 2 8 0.5 8 0
sdd44 11 1.5 11 0 16 0.6 13 1
§526 - - - - 6 0.5 5 1
s713 32 0.8 32 0 32 0.6 32 0
$953 - - - - 5 22 S 0
51238 6 2.8 6 0 12 13 12 0
51423 5 15 5 0 9 1.5 9 0
s1494 1 1.7 1 0 1 2.0 1 0
$5378 366 69.3 48 11 796 151.2 224 3
59234 270 | 142.8 165 6 911 209.2 892 1
s13207.1 - - - - 391 171.4 232 1
$15850.1 - - - - 320 471.1 290 1
$35932 3984 | 684.8 3984 0 3984 986.3 3984 0
s38417 147 | 386.2 115 1 343 577.8 333 1
s38584 1437 | 2720 1052 3 1460 | 2505.1 1145 1

[13] S.T.Chakradhar and V. D. Agrawal, *“A Transitive Closure Based Al-
gorithm for Test Generation,” Proc. ACM/IEEE Design Automation
Conf., pp. 353-358, June 1991.)

[14] D. Stoffel, W. Kunz, and S. Gerber, “And/Or Reasoning Graphs
for determining Prime Implicants in Multi-level Combinational Net-
works,” Asia and South Pacific Design Automation Conference,
pp. 529-538, Jan. 1997. .

{15] W. Kunz and D. Pradhan, “Recursive Learning: An Attractive Alter- Table 3: Results of untestable fault identification using FUNTEST
native to the Decision Tree for Test Generation in Digital Circuits,” FUNTEST[22] w/ SIM P
Proc. Int. Test Conf., pp. 816-825, Sept. 1992. Circuit Unt. (sec) Unt. | (sec)

[16) P. Tafertshofter, A. Ganz, and M. Henftling, “A SAT-Based Impli- 5298 - - 3 1.2
cation Engine for Efficient ATPG, Equivalence Checking, and Opti- s344 N - 3 1.0
mization of Netlists”, Proceedings of IEEE/ACM International Con- 5349 5 03 5 10
ference on Computer-aided Design, pp. 648-655, Nov. 97. 3% . 7 3'4

[17] Wolfgang Kunz, "HANNIBAL: An Efficient Tool for Logic Veri-
fication Based on Recursive Leaming,” Proceedings of IEEE/ACM s386 21 0.5 60 2.6
International Conference on Computer-Aided Design, pp 538-543, s400 1 0.6 8 3.8
1993. s444 8 0.5 16 5.0

[18]) P.R. Menon and M. Harihara, "Redundancy Identification and Re- $526 N - 2 39
moval in Combinational Circuits,” Proceedings of IEEE Interna- 713 32 0.3 32 4.0
tional Conference on Computer Design, pp 290-293, 1989. $953 - - 5 17.7

[19] A.V.Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis $1238 6 3.0 12 7.1
of Computer Algorithms, Addison-Wesley, pp 219-220, 1974. 51423 5 0.7 9 9.74

[20] 1. K. Zhao, E. Rudnick, and J. Patel, “Static Logic Implication with 1494 1 1.8 ! 13.4
Application to Redundancy Identification,” in Proceedings of the s5378 210 25.6 772 | 4219
15th IEEE VLSI Test Symposium, 1997. 9234 277 126.1 923 697.8

[21] J. K. Zhao, J. A. Newquist, and J. Patel, ”A Graph Traversal Based 513207.1 - - 376 | 992.5
Framework for Sequential Logic Implication with an Application to $15850.1 - - 317 2385
C—.cycle Redundancy Identification,” Technical Report, Coordinated $35932 3984 340.6 3984 | 2939
Science Lab, CRHC-98-14, Dec. 1998. $38417 125 €60 337 3601

[22] M. Iyer and M. Abramovici, “Sequentially untestable faults identified
without search,” Proceedings of IEEE International Test Conference,
pp 259-266, June 1994.

[23] V. D. Agrawal and S. T. Chakradhar, “Combinational ATPG Theo-
rems for Identifying Untestable Faults in Sequential Circuits,” Euro-
pean Test Conference, pp 249-253, 1993.

169

