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The minimum number (N) of stages in the ring without perfor-
mance degradation depends on the forward latency (Ly) and the
reverse latency (L) as shown in the following equation [6]

_— L
N = {2(1+ Lj)-’ ©)

The ring structure proposed in [6] has five stages because L. /Ly is
1.1. Because the ratio of our design for nonoverlapped execution
is 2.3, we need eight or more substages. Therefore, we put four
stages(eight substages in total) in the ring.

IV. CONCLUSION

The self-timed divider structure proposed in this brief requires
less chip area and maintains higher hardware utilization than the
previous implementations employing array or ring structures. The
structure is more efficient in terms of execution time and chip area
due to the adoption of a novel self-timed ring structure and a carry-
propagation-free addition/subtraction scheme. A layout was designed
using MOSIS 1.2 pum CMOS design rules. The design occupies 5.7
mm? of silicon area and takes 135 ns for a worst case division
operation.
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FIRE: A Fault-Independent Combinational
Redundancy Identification Algorithm

Mahesh A. Iyer and Miron Abramovici

Abstract—FIRE is a novel Fault-Independent algorithm for combina-
tional REdundancy identification. The algorithm is based on a simple
concept that a fault which requires a conflict as a necessary condition for
its detection is undetectable and hence redundant. FIRE does not use the
backtracking-based exhaustive search performed by fault-oriented auto-
matic test generation algorithms, and identifies redundant faults without
any search. Our results on benchmark and real circuits indicate that we
find a large number of redundancies (about 80% of the combinational
redundancies in benchmark circuits), much faster than a test-generation-
based approach for redundancy identification. However, FIRE is not
guaranteed to identify all redundancies in a circuit.

Index Terms— Redundancy identification, automatic test generation,
logic synthesis.

I. INTRODUCTION

An automatic test generation (ATG) algorithm spends a large
portion of its time dealing with undetectable faults. A fault is
undetectable if there exists no test to detect it. A fault is identified
as undetectable only when the test generator fails to generate a test
to detect it, after exhausting the search space. Any ATG algorithm
relying on exhaustive search can identify all single undetectable
faults, if given enough time. Practical limits imposed to keep the
computation time within reasonable bounds may result in aborting the
search process for “difficult” target faults. Most abandoned faults are
undetectable. Thus, the test generator exhibits its worst-case behavior
for undetectable faults.

In a combinational circuit, an undetectable stuck fault is always
caused by a redundancy. Such a circuit can be simplified by removing
the redundant region associated with the undetectable (redundant)
fault. In addition to complicating ATG, redundancies have many other
detrimental effects. The presence of a redundant fault may preclude
the detection of other faults in the circuit and may convert a complete
detection test set into an incomplete one [1]. Redundancies increase
the chip area, the power consumption, and often the propagation
delays in the circuit. Redundancies may also unnecessarily reduce
the yield of the IC manufacturing process [2]. For example, many
combinationally redundant faults become detectable with Ippg test-
ing. Although the circuit remains fully operational in the presence
of a redundant fault, Inpg testing will reject that faulty circuit and
will result in a yield loss. Another problem is that the presence of
abandoned faults may preclude achieving the desired fault coverage.

Redundancy identification (RID) using ATG is indirect and is a
byproduct of test generation. In contrast, a direct RID technique finds
redundancies without using the exhaustive search process of ATG.
Direct RID techniques can be classified as static or dynamic. Static
RID techniques work as preprocessing to ATG, whereas dynamic RID
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techniques work during ATG. These low-cost direct techniques can
significantly reduce the CPU time used in ATG.

Static RID techniques based on an explicit analysis of reconvergent
fanout structures have been proposed in [3] and [4]. These methods
analyze every reconvergent gate of every stem to discover controlling
value implications that reach dominators. In contrast, the analysis
performed by our algorithm is much simpler, and dominators and
reconvergent gates are analyzed only implicitly.

Most indirect RID methods [5]-[10] attempt to accelerate ATG
using several preprocessing and dynamic techniques. More recently,
other improved combinational test generators use powerful impli-
cation procedures [11] or boolean satisfiability formulations [12].
Nevertheless, all these approaches are fault-oriented and require a
branch-and-bound search to accomplish RID as a byproduct.

Once a redundant region associated with a redundant fault is
removed, new redundancies may be introduced in the circuit. In
earlier work [13], we proposed a dynamic RID technique to identify
a subset of these newly created redundancies. This technique was
based on analyzing combinations of values that become illegal as a
result of the removal and was used to avoid repeated runs of ATG
and fault simulation. We described a general method to find faults
for which a given combination of values (on a set of lines) is a
necessary condition for detection.

In this paper, we extend this method for static RID. Some results of
this work were reported in [14] and [15]. Our Fault-Independent algo-
rithm for REdundancy identification (FIRE) assumes combinational
circuits with AND, NAND, OR, NOR, and NOT gates as primitives. FIRE
identifies redundant faults for which a conflict on a single line in
the circuit is necessary for their detection. This approach is radically
different from any ATG-based approach for RID which identifies
a fault as redundant, if all possible ways to detect that fault end up
with conflicts. In contrast, our approach starts with a possible conflict
(which is always the root cause of combinational undetectability) and
finds faults for which that conflict is necessary for detection. Its key
advantages are that RID can be accomplished without any search
and that several redundant faults may be identified by analyzing the
same conflict. FIRE has polynomial-time complexity. Hence it is not
guaranteed to identify all redundancies in a circuit, since the RID
problem is NP-complete [16].

FIRE can be used as a preprocessor to an ATG program,. which
can avoid targeting the faults identified as redundant and thus save
the large computational effort associated with them. Identifying
redundancies may provide useful feedback for designers, helping
them in locating design errors or finding ways to simplify the circuit.
RID is also very useful in synthesis, by providing the basis for
redundancy removal.

The rest of the paper is organized as follows. Section II reviews
our earlier work in RID. Section III describes our new algorithm for
static RID. Section IV presents our results and Section V concludes
the paper.

II. RID USING ILLEGAL COMBINATIONS OF VALUES

This section reviews our previous technique to identify redundant
faults for which an illegal combination of values (on a set of lines in
the circuit) is necessary for detection. Assume that {X =a, Y =
b, Z = c} is an illegal (impossible) combination of values in the
fault-free circuit. Faults for which this combination of values is
necessary for detection are undetectable and hence redundant. We
decompose the problem of finding such faults, by finding the faults
for which each condition is individually necessary for detection. Let
Sx, Sy, and Sz be the sets of faults that require X = a, ¥ = b,
and Z = c, respectively, for detection. Then the faults that require
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Fig. 2. Conditions for marking stem unobservability.
X =aand ¥ = b and Z = c¢ for detection are in the set

Sxyz = Sx NSy NSz,

The faults in Sx become undetectable when X cannot assume
value a (or when X is uncontrollable for value a). To find these
faults, we use an improved version of the uncontrollability and
unobservability analysis introduced in [17]. In this analysis, 0(1)
denotes the status of a line that is uncontrollable for value 0(1).
Note that this uncontrollability is conditional and occurs only when
X cannot have value a. For example, to compute the set Sx, the
algorithm propagates X = a and determines the faults that become
undetectable if X cannot have value a; thatis, X = a is a necessary
condition for the detection of these faults.

Fig. 1 illustrates the propagation rules of the uncontrollability
indicators. Uncontrollability can propagate forward and backward,
as shown by arrows. For example, the output of a NAND gate is 0
if at least one input is I, and is 1 iff all its inputs are 0. Similar
rules apply to other gate types. Propagation of uncontrollability
may result in some lines becoming unobservable. If a gate input
cannot be set to the noncontrolling value of the gate, all the other
inputs become unobservable. For example in Fig. 1, a = I implies
that b is unobservable (unobservable lines are marked with a “*).
This is because ¢ = 1 is necessary to observe a value on b.
The unobservability status propagates from a gate output backward
to all its inputs; in Fig. 1, b being unobservable makes ¢ and d
unobservable as well. The meaning of these implications is that = 1
is necessary to observe fault effects from b, ¢, and d. When all fanout
branches (FOB’s) of a stem are marked as unobservable, we use the
following lemma to decide whether the stem may also be marked as
unobservable.

Lemma 1. A stem s with all its FOB’s marked as unobservable
may also be marked as unobservable if for each FOB f of s, there
exists at least one set of lines {/;} such that the following conditions
are satisfied:

1) f is unobservable because of uncontrollability indicators on
every line in {I;}; and
2) every line in {ls} is unreachable from s.
Proof: We use Fig. 2 for the proof. Assume that a value o

from some line ! implies @ = 1 and b = 0, and that a and b are
unreachable from s. @ = 1 makes f1 unobservable and b = 0 makes
f2 unobservable. To observe stem s, at least one of {a = 1,b = 0}
must be achieved. (Both a and b are unreachable from s, and a fault-
effect from s cannot propagate on either of them.) This is possible
iff | = v. Hence ! = v is necessary for the detection of s. O

In general, a stem may be observed even if none of its FOB’s is.
The following example illustrates how such a stem will not satisfy
the conditions of Lemma 1.
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TABLE 1
JMPLICATIONS FOR EXAMPLE 2
Process Uncontrollability Unobservability Implied Faults
a=1|a=al=a2=e=1 d,a2, b, c S, = {ag, a2q.dy, bo, ¢y, €0}
b=0 b=d=0 a2 S, = (d,, a2/
c=1 c=e=1 d,a2,b,al,a | S, ={dy, bo,a2q,al,,ay, a;,eq)

Redundant faults: S, — S, M Sc = { di, a2/
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An observable stem with unobservable FOB’s.
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Fig. 5. An example circuit.

Example 1: Consider the AND gate in Fig. 3. Assume that a = 1
which causes al = a2 =b = 1. al = 1 is necessary to observe a2
and a2 = 1 is necessary to observe al. However, neither of these
is necessary to observe a. Lemma 1 is not satisfied because both al
and a2 are reachable from a. d

While determining uncontrollable and unobservable lines, we can
also identify the faults that become undetectable. These are the faults
that cannot be activated (s-a-0 on I lines and s-a-1 on 0 lines) and
the faults that cannot be propagated (both faults on unobservable
lines). The conditions for which we identify undetectable faults that
cannot be activated are obvious. However, identifying undetectable
faults on unobservable lines requires the following justification. The
requirements for observing fault-effects may be either in the faulty or
the fault-free circuit. Consider for example, the AND gate in Fig. 4.
To observe a 0/1 fault-effect (fault-free value/faulty value) on a at a
primary output (PO), a 1 must be justified on b in the faulty circuit.
However, to observe a 1/0 fault-effect on a, a 1 must be justified on
b in the fault-free circuit. If b had a 1, our rules for unobservability
propagation claim that a 1/1 on b is necessary to observe both fault-
effects on a. This is true if any vector which justifies a 1 on b (to
observe a fault-effect on a), in either the fault-free or the faulty circuit,
will drive a 1/1 on b. This condition will be invalidated only if
multiple fault-effects arrive at the inputs of this gate. Lemma 1 in
fact pessimistically ensures that this situation does not occur.

We refer to the process of propagating uncontrollability and
unobservability to determine undetectable faults as implication. In
summary, the procedure to find the redundant faults caused by an
illegal combination {l; = vi,lo = va,...} i8

e =D Py

d

Fig. 6. An example circuit.
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An example circuit [3].

Fig. 7.

1) For every I; = wv;, imply l; = ¥; to determine all lines
becoming uncontrollable or unobservable. Let S; be the set of
the corresponding faults. (Note that the implications are done
separately for each 7.)

2) The redundant faults are in the set $ = RS;.

This is a general procedure to find faults for which a given
combination of values is a necessary condition for detection. If the
combination is illegal, then the faults so found are redundant.

Example 2: Consider the two subcircuits shown in Fig. 5. Assume
that the function of the subcircuit CKT1 precludes the combination of
values a = 1, b = 0, and ¢ = 1. The corresponding implications are
summarized in Table L. (A s-a-v fault on a line [ is represented as Iy,
and we use a collapsed set of faults based on functional equivalence.)
The faults in the set S,, for example, are those which require @ = 1
as a necessary condition for their detection.

Note that when ¢ = 1, both al and a2 are unobservable and hence
a is also unobservable, because ¢ is unreachable from ¢ and ¢ = 1
is necessary to observe a. (The information that e is a dominator for
a is implicitly computed.) Thus, S, N Sy N S = {d1,a20}, which
identifies d s-a-1 and a2 s-a-0 as undetectable. It can be verified that
a=1, b=0, and ¢ = 1 is a necessary condition for the detection
of these faults. a

III. A NOVEL EXTENSION FOR STATIC RID

The previous section outlined a procedure to identify redundant
faults by processing an illegal combination of values on a set of lines,
{li = v1,l2 = va2,...,ln = va}. The novel extension we propose
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TABLE 11
IMPLICATIONS FOR EXAMPLE 3
Process Uncontrollability Unobservability Implied Faults
c=0 c=cl=c2=_c3=6 b,d,e, a,cl So ={cly, fo. &0 ig»
f=g8=1_ bo,do, €o, a;}
h=0,i=1
c=1 cl=c2= cS_zT a,h, f,g,b, Sy =1{c24, 3, iy, hg,
e=0,i=1 c2,¢3,d Jo, 80> bo,do,a;/
Redundant faults: Sy ~ Sy = { iy, fo, g9, bg» dg, ay )
TABLE 11
IMPLICATIONS FOR EXAMPLE 4
Process Uncontrollability Unobservability Implied Faults
f=0 |l c=d=al=bl=a=_|f,c,dal,bl, | Sy=/[c,.dy.al,, bl a,,
b=a2=b2=e=g=0 e, b2, a2 a2y, by, b2y, gy, fo, €4}
f=1 f=1 - Sy = (fol
Redundant faults: S¢ ~ S, ={ f; /
here is to process conflicting values on the same line, {, considering TABLE IV
{=0and! =1 as a special case of an illegal combination. RESULTS FOR BENCHMARK CIRCUITS
. . d . .
In 'prn?cxplc, the analysis coul be. performed for every signal in Circuit FIRE TG (Bt Limit=100) || Speed-
the circuit. Conflicts can occur only in the presence of reconvergent
. . Name # CPU # # CPU up
fanout structures, and the signal leads where conflicts occur are fanout .
. K Red. | secs. {| Red. | Abo. secs. Ratio
stems. The following example illustrates how redundant faults can be
. . . . C1908 6 1.8 6 0 5.0 2.8
identified by processing conflicts on stems. 2670 % 3 5 5 1A 55
Example 3: Consider the circuit in Fig. 6. We process a conflict - 5 - 48
on stem ¢ by propagating ¢ = 0 and ¢'= 1 and determining the faults 3540 23 119 0 27 0.
that require ¢ = 0 and ¢ = 1, respectively, as necessary conditions C3315 20 2.8 20 0 10.0 3.6
for detection. The resulting implications are summarized in Table II. C6288 33 t.3 33 0 259 19.9
The redundant faults identified are {io. fo. go.bo.do. a1} a. C7552 30| 47} 30 o 1734 37
In general, a fault could be redundant because of a conflict on 5349 2 04 0 0.7 1.8
at least one stem from a group of stems. The detection of such a S444 1 0.2 8 0 0.7 3.5
fault does not require a conflict on any single stem as a necessary S713 32 0.1 32 0 1.0 10.0
condition, and the fault will not be identified by the above analysis. 51238 6 L9 0 1.6 0.8
Our observation is that such conflicts often map as conflicts on S1423 5 0.3 5 0 2.6 8.7
reconvergent inputs of reconvergent gates. S1494 1 1.1 1 0 1.4 1.3
Example 4: Consider the circuit in Fig. 7 [3] and the fault f S$5378 34 37 34 0 15.8 43
s-a-0). Clearly, the activation of this fault requires ¢ = d = al = $9234 165 20.6 158 7 55.6 2.7
bl = a = b = 1. Also, to propagate the fault-effect from f. e S13207 55 232 55 0 30.4 1.3
has to be 0 which requires either a or b to have value 0. Thus f S15850 234 | 205 234 0 157.8 77
s-a-() requires a conflict on either a or b and processing either a $35932 3984 | 235.6 || 3984 0 2502.4 10.6
or b individually for conflicts will not find this fault as redundant. S38417 99 154 99 0 3759 1
However, as summarized in Table III, processing a conflict on line f $38584 1037 | 1560 || 1036 0 12647 81

(a reconvergent input of a reconvergent gate common to both stems)
identifies f s-a-0 as redundant. O

The preceding examples show that the entire analysis to determine
redundant faults is fault-independent and analyzing a single conflict
can identify several redundant faults. FIRE is outlined in Fig. 8.
Although, in general, processing conflicts on reconvergent inputs
of reconvergent gates in addition to fanout stems can find more
redundant faults, FIRE processes conflicts only on fanout stems.
This follows from our empirical observation that processing conflicts
only on stems finds most redundancies in the circuit and saves a

lot of computation time. All the results reported in Section IV were
obtained by processing only stem conflicts.

A Note on the Time Complexity of FIRE

Let n be the number of lines in the circuit. FIRE analyzes all
the stems, whose number is a fraction of n. The worst-case for
FIRE would occur when the implications for uncontrollability and
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TABLE V
REsuLTS FOR REAL CIRCUITS
Circuit Parameters FIRE LTG Speed
Circuit -up
Name # # # # # CPU # # CPU Ratio
Gates | FFs | PIs POs || Red. secs. Red. | Abo. secs.
Test7 829 31 40 41 94 4.6 94 0 7.3 1.6
AMD2910 915 87 20 16 102 45 102 0 12.3 2.7
Chipl7 1182 22 29 39 113 23 113 0 22.1 9.6
Chip58 1242 83 123 128 6 2.2 6 0 2.6 1.2
Test132 2272 24 162 88 336 4.7 336 0 158.7 33.8
Testl17 3204 82 110 141 295 5.8 295 0 217.0 374
Test149 4249 88 176 187 674 383 666 8 4549 119
Test198 4257 87 147 141 396 35.8 396 0 268.6 7.5
Test105 5598 | 162 230 343 737 29.8 737 0 615.3 20.7
Test154 5781 | 108 245 240 517 41.1 517 0 410.4 10.0
Test122 7179 1 270 303 952 1459 938 14 1431.0 98
Test66 7614 | 162 193 326 305 63.2 305 0 594.2 9.4
Test119 12635 | 183 398 405 988 2159 988 0 24322 i1.3
C42825 18504 0 | 1179 | 1180 || 2630 | 1013.0 || 2630 0 2050.8 2.0
TABLE VI
PERCENTAGE OF REDUNDANCIES IDENTIFIED BY FIRE
Circuit FIRE TRAN % FIRE || % FIRE time
Name #Red. | CPUsec. || #Red. | CPUsec. || of Total || of TRAN time
C1908 6 1.8 7 13.0 85.7 13.9
C2670 29 1.5 115 95.2 252 1.6
C3540 93 11.9 131 249 71.0 47.8
C5315 20 2.8 59 323 339 8.7
C6288 33 1.3 34 38.0 97.1 34
C7552 30 4.7 131 308.0 229 1.5
S349 2 0.2 2 03 100.0 66.7
S444 11 0.2 14 04 78.6 50.0
S713 32 0.1 38 3.1 84.2 32
S1238 6 19 69 174 8.7 10.9
S1423 5 0.3 14 8.5 35.7 35
S1494 1 1.1 12 37 8.3 29.7
S5378 34 3.7 40 730 85.0 5.1
S9234 165 20.6 452 803.7 36.5 2.6
S13207 55 23.2 151 806.5 36.4 2.9
S15850 234 20.5 389 1177.5 60.2 1.7
S35932 3984 235.6 3984 1617.0 100.0 14.6
S38417 99 45.4 165 5078.2 60.0 0.9
S$38584 1037 156.0 1506 2483.8 68.9 6.3

unobservability propagate through the entire circuit. The conditions
for marking stem unobservability (Lemma 1) are checked only when
all FOB’s of a stem are marked as unobservable. This situation is
quite seldom. Hence, ignoring the computations required to check
for conditions of Lemma 1, the worst-case complexity of FIRE is
O(n?). However, in practice, implications propagate only through
a small subcircuit surrounding the analyzed stem. Moreover, the
size of this subcircuit remains practically the same as n increases.
Therefore the worst-case situation never occurs, and in practice,
FIRE identifies redundancies in linear time; this is very important,

considering that the RID problem is NP-complete [16]. However,
FIRE is not guaranteed to find all the redundancies in the circuit. The
experimental results reported in the next section attest the efficiency
of the algorithm.

Iv.

FIRE was implemented in C in a prototype program. To compare
FIRE with a fault-oriented approach for RID, we used the LTG
test generation/fault simulation package {6]. Faults proved redundant
by FIRE were passed as targets to LTG with a backtrack limit of

RESULTS
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FIRE() {
For every stem s in the circuit {

Imply 5 = 0 to determine all lines becoming uncontrollable or unobservable.
Let S, be the set of the corresponding faulits

Imply s = 1 to determine all lines becoming uncontrollable or unobservable.

Let §; be the set of the corresponding faults

The redundant faults are in the set S = §y ~ S,

}
}

Fig. 8. Outline of the FIRE algorithm.

100. LTG also has the advantage of dynamic RID techniques [18].
It is true that in a free run, LTG would, in general, identify more
redundancies than FIRE. However, the purpose of these experiments
is to testify how much time LTG would save by not targeting the
faults proved redundant by FIRE. Table IV shows the comparison
for the ISCAS8S combinational benchmark circuits [19] and for the
full-scan versions of the ISCAS89 sequential benchmark circuits
[20]. (These results are for a collapsed set of faults.) We show
only the circuits where redundancies were identified by FIRE. #Red.
represents the number of identified redundancies. The CPU rimes
are in seconds for a SUN sparc2. #Abo. represents the number of
targets aborted by LTG. Speed-up ratio represents (LTG time)/(FIRE
time). For almost all the circuits, FIRE performed much better than
LTG. For S35932, FIRE found 3984 redundant faults in 236 s. LTG
found ail of them to be redundant in 2502 s. Thus, in this case,
FIRE is about 11 times faster than LTG. Furthermore, for $9234,
LTG could not solve all the target faults identified as redundant by
FIRE.

Table V shows the results obtained for some real circuits. Gates,
FF’s, PI's, and PO’s refer respectively to the number of gates, flip-
flops, primary-inputs, and primary outputs. FIRE performed much
better than LTG for all the circuits. A speed-up ratio of up to 37 was
achieved for these circuits.

Table VI shows the percentage of redundancies identified by FIRE
in the benchmark circuits. Since TRAN [12] is a state-of-the-art com-
binational test generator that reports all the single-fault redundancies
in the benchmark circuits, we used it for our comparisons. The TRAN
CPU times are also for a SUN sparc2 and include times for random
test generation, transitive closure algorithm and fault simulation. Note
that TRAN can find more redundancies at the expense of more
CPU time. In some cases (like $35932), FIRE did a complete job
of finding all the redundancies. However, in some other cases (like
S1238) FIRE did not perform as well. We believe that the reasons for
such a behavior are i) Our implication procedure is not complete; ii)
there could be redundant faults that do not require a single conflict
as a necessary condition for detection, and iii) Lemma 1 to mark
unobservability on a stem is pessimistic and provides only a sufficient
condition. We also show the percentage of FIRE CPU time of the total
CPU time used by TRAN to identify these redundancies. For example,
in S38417, FIRE identified 60% of the combinational redundancies in
0.9% of the total time used by TRAN to identify all the redundancies.
FIRE found 5876 (about 80%) of the total 7313 redundant faults in
these circuits. In summary, FIRE identified a range of 8.3 to 100%
of the redundant faults identified by TRAN and FIRE CPU times
ranged from 0.9 to 66.7% of TRAN CPU times. Note that in every
case when FIRE time was more than 15% of the TRAN time, the
FIRE time was under 12 s. The results in Table VI indicate that FIRE
can be an useful preprocessor even to state-of-the-art test generators
like TRAN.

V. CONCLUSION

This paper has presented FIRE, a new fault-independent combi-
national redundancy identification algorithm. FIRE identifies faults
for which conflicts on fanout stems are necessary for detection. The
process is based on logic implications, as opposed to the exhaustive
search done by ATG algorithms. By processing a single conflict, FIRE
may identify several redundant faults that would require separate
targeting by an ATG-based approach.

Our results indicate a speed-up of up to about 37 times when
compared to a fault-oriented conventional ATG algorithm that tar-
geted only the faults identified by FIRE. Although FIRE is not
guaranteed to identify all redundancies in a circuit, it did identify
80% of the redundant faults in the benchmark circuits. Thus FIRE
could be used as a fast preprocessor to ATG and to obtain significant
savings in computations. Since FIRE is based on logic implications,
any improved procedure to compute global value assignments [11],
[12] is expected to improve the performance of FIRE.

Logic synthesis procedures for redundancy removal are very time-
consuming if they rely on ATG for RID, because many faults have to
be repeatedly targeted. FIRE can provide significant advantages over
ATG in this application, since repeated use of FIRE for RID is much
more efficient than repeated use of ATG.

While combinational ATG is a problem where current state-of-the-
art algorithms can efficiently deal with VLSI circuits, the same cannot
be said about the much more complex sequential ATG problem,
which may require extremely long run-times. Recent extensions of
the techniques presented in this paper to sequential circuits produced
efficient algorithms to identify sequentially untestable and redundant
faults [15], [21]-[23] up to several orders of magnitude faster than a
conventional sequential test generator.
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