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Abstract—New methods for fault-effect propagation and state flops to the primary outputs, and state justification was done
justification that use finite-state-machine sequences are proposedpy using BDD's. Since these sequences are generated using
for sequential circuit test generation. Distinguishing sequences the fault-free machine only, they may become invalid in a

are used to propagate the fault effects from the flip-flops to faul hi Homi d of o
the primary outputs by distinguishing the faulty machine state 2ulty machine. Homing sequences composed 0O specifying

from the fault-free machine state. Set, clear, and pseudoregis- and distinguishing portions were used to aid ATPG in [11],
ter justification sequences are used for state justification via a but they had to be recomputed for each target fault.

combination of partia| state justiﬁcation solutions. Reengineering The presence of a fault creates a faulty machine (C|rcu|t

of existing finite-state machine sequences may be needed forgy, e} which differs from the fault-free machine. The
specific target faults. Moreover, conflicts imposed by the use of

multiple sequences may need to be resolved. Genetic-algorithm- 902l i_s to diSti”QUiS_h the faulty machine from the fau!t—fre_e
based techniques are used to perform these tasks. Very high fault machine by activating the target fault and propagating its

coverages have been obtained as a result of this technique. effects to the primary outputs. With the test generation process
Index Terms—Automatic test generation, genetic engineering, divided into fault activation and fault propagation phases, the
pseudoregisters, state justification. principal approach taken in our work is to use finite-state-

machine sequences in as many places as possible to reduce
the work of rediscovering such sequences. The finite-state-
machine sequences used in this work encompass distinguishing
HE MAJORITY of the time spent by automatic teskequences, set/clear sequences, and justification sequences, all
generators for sequential circuits is used to find tegt which will be explained in the subsequent sections. No state
sequences for hard-to-detect faults. These hard faults are eifiggrams are needed in this work.
hard to excite, hard to propagate, or both. Deterministic testSeveral questions remain. Since there are many finite-state-
generators have been proposed in the past [1]-[12], but th@chine sequences for any large machine, what finite-state-
require backtracing through complex gates and flip-flops, af¢hchine sequences should be generated and stored? Sequences
remodeling of such primitives is often required. Simulationderived for a fault-free machine may not be valid for a faulty
based test generators, on the other hand, avoid the complexi®chine, or they may be valid for some faulty machines, but
of backtracing by processing in the forward direction onlyyot for other faulty machines; how can invalid sequences be
However, simulation-based approaches often fall short whgged to fit the specific needs of the target fault? Moreover,
targeting the hard faults. A finite-state-machine sequence may not always exist; can
Previously, homing, synchronizing, and distinguishing semrtial sequences be used? Finally, we cannot indiscrimi-
quences have been used to aid the test generator in improviagely generate large numbers of sequences because potential
the fault coverage [6], [10]-{12], [26]. In [6], [10], andproblems of excessive storage and execution may result.
[12], symbolic and state-table-based techniques were useqy this work, several classes of finite-state-machine se-
to derive these sequences in the fault-free machine. In [Bliences are generated statically for the fault-free machine,
cube intersections of ON/OFF-set representations were Usgf)| also captured dynamically for the fault-free and faulty
to derive distinguishing sequences. Binary decision diagramschines during the test generation process. The difficulty
(BDD's) and implicit state enumeration were used in [10] t8f deriving a sequence is taken into account at run time in
derive synchronizing sequences. In the work by Petrlal.  the computation of flip-flop controllability and observability.
[12], functional information was used to pregenerate sequUeNggsse measures are much more accurate than the conven-
which simplified the propagation of fault effects from the flipgiona) controllability and observability metrics. They help
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Fig. 1. Two-phase test generation strategy.

derive and manipulate finite-state-machine sequences andviork and previously proposed GA-based techniques is that
the overall test generation process. we utilize problem-specific knowledge during test generation
Several approaches to test generation using genetic algod explore genetic engineering of sequences that exploit
rithms have been proposed in the past [15]-[27]. Fitnessch knowledge to significantly improve the quality of test
functions were used to guide the GA in finding a test vectgeneration, both in terms of fault coverage and execution time.
or sequence that maximizes given objectives for a single faultThe remainder of the paper is organized as follows.
or group of faults. In GATEST [27] and ALT-TEST [25], the Section Il gives an overview of this work; Section IlI briefly
fitness functions were biased toward maximizing the numb@escribes the genetic algorithm framework used in the test
of faults detected and the number of fault effects propagatedd@nerator; Section IV gives details about the derivation
flip-flops; increasing the circuit activity was a major objectivénd application of finite-state-machine sequences; Section V
in CRIS [15] and GATTO [20]. Maximizing the propagationdiscusses the test generation algorithm, including fault
of fault effects to flip-flops and increasing circuit activityactivation in the single-time-frame mode, selection of target
have been shown to increase the probability of detectir_fﬁultsi f';md fitness evalgatlon; experimental results are given
faults at the primary outputs. Although the fault detectiolfl S€ction VI and Section VII concludes the paper.
probability improves, activating a hard fault and propagating
fault effects from flip-flops to a primary output remain difficult Il. OVERVIEW
problems. Furthermore, propagation of fault effects was doneOur test generation strategy uses several passes through
indiscriminately (i.e., the GA-based test generator does not

attempt to drive the fault effects to more observable flip-flop e fault list, with faults .tar.geted |nd|\l/|du.ally In two .phases.
R . o o e two-phase strategy is illustrated in Fig. 1. The first phase
resulting in much wasted effort. Increasing circuit activity ma

be ineffective i tivati i fault and i Ecuses on activating the target fault, while the second phase
€ Inefiective In activating a given fault, and propagation Qiqq propagate the fault effects (FE’s) from the flip-flops
fault effects from certain flip-flops may not be possible. Th

i ) S g .\FF’'s) to the primary outputs. A target fault is selected from
hard-to-activate faults in some circuits may require specifify ¢a it jist at the beginning of the fault activation phase,
states and justification sequences in order for them to Bey o attempt is made to derive a sequence that excites the
activated, and the previous GA-based test generators Ngyg and propagates the fault effects to a primary output or to
failed to drive the circuit to these specific states for faulhq fjip-flops. Once the fault is activated, the faults effects are
excitation, resulting in low fault coverages. For instance, G&)‘ropagated from the flip-flops to the primary outputs in the
based test generators have obtained low fault coverages dgeond phase with the assistance of distinguishing sequences.
ISCAS89 circuits [13]s820, 5832, 51488, ands1494 due 10 The target fault is detected at the primary outputs when
frequently deep and specific sequences necessary t0 ex@E€ faulty machine state is distinguished from the fault-free
the faults, but deterministic test generators have been qui{@chine state. The distinguishing sequences corresponding to
successful in generating tests for them. The differences in fagie flip-flops reached by the fault effects are usecetwjineer
coverages were as high as 30% for such circuits. Even whgalid sequence which successfully distinguishes the faulty
a GA was specifically targeted at state justification, the simpigate from the fault-free state.

fitness function used was inadequate for these circuits [22],During the fault activation phase, single-time-frame activa-
[27]. Utilizing finite-state-machine information allows us tdtion is entered if no single activation sequence can be found
overcome the limitations of the previous genetic approachefxectly from the state in which the previous sequence left off.
closing the 30% gap in fault coverage for these circuitThe state derived by single-time-frame activation is relaxed
for other circuits, higher fault coverages than ever befoend the relaxed state is then justified to complete the fault
have been obtained. The main difference between our presactivation, as illustrated in Fig. 2.
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Fig. 2. State justification process.
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Fig. 3. Justification of partial states.

Flip-flops that are assigned the don’t care valueXofare an attempt is made to justify the required state by evolving
considered to be unspecified. If stelgis partially specified, the GA population over several generations. In the process,
then an exhaustive set of states can be obtained by enumeratiirgcandidate sequences contained in the GA population are
don't care (unassigned) values 8f. For example, statX01 simulated, starting from the last state reached after the previous
is partially specified, and it represents two stfi8% and101. test sequences have been applied. The objective is to engineer

Definition 1: StateS; coversstates; if the group of states a sequence that justifies the required state. Note that the

represented by; is a subset of states representedsy state justified only needs to be covered by the relaxed state.
Definition 2: A flip-flop is relaxedif its value is changed Consider the situation shown in Fig. 3 in which an attempt
from 0 or 1 to a don't care valueX. is being made to justify statd X00X101. SequenceS;

In the single-time-frame fault activation, the aim is tsuccessfully justifies the first half of the state, but fails to
find a test vector, composed of primary input and flip-flojustify the second half; on the other hand, sequesicpistifies
values, that can activate the target fault in a single tinenly the second half of the state. These two sequenzes
frame. Once a vector (primary input and flip-flop valuesind S, may provide important information in evolving the
is successfully derived, the state (flip-flop values) is firstomplete solutionSs, which justifies the complete state. The
relaxed to one that has as many don't-care valuE$ &s use of the information provided by; and Sy in deriving
possible, but is still capable of activating the target fault. Stasequences; is explained later in this paper.
relaxation, which was first proposed by Niermann and Patellf a sequence is found that justifies the required state, the
[7], [8], improves the success rate of the state-justificatimequence is added to the test set, a fault simulator is invoked
process which immediately follows. Next, finite-state-machirte remove any faults detected by the sequence, and the test
sequences for setting and clearing individual flip-flops and fgenerator proceeds to the fault propagation phase. Otherwise,
justifying the values of groups of flip-floppgeudoregiste)s test generation for the current target fault is aborted, and
are used as seeds in the GA to aid state justification, amacessing continues for the next fault in the fault list. In the
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fault propagation phase, the GA is seeded with distinguishisgquential depth is defined as the minimum number of flip-
sequences for the flip-flops to which fault effects have profieps in a path between the primary inputs and the furthest
agated. The distinguishing sequences used as seeds may bate The population size is set equal te ¢sequence length
been derived for the fault-free machine or for a different faultyyhen the number of primary inputs is fewer than 16 and
machine starting from a different state, and thus they may i x /sequence length when the number of primary inputs
be directly applicable to the current situation. Therefore, the greater than or equal to 16. During the first stage of
GA population may have to evolve over several generatiotest generation in the first pass through the fault list, the
before an accurate distinguishing sequence is derived. Figgquence length is set equal to the structural sequential depth.
flops that do not have distinguishing sequences are identifiede sequence length is doubled in the second stage of test
during the test generation process, and propagating fault effeg¢sieration and doubled again in the third stage since harder
to these hard-to-observe flip-flops is avoided. If a sequence tfetlts may require longer sequences for activation and/or
drives the fault effects to the primary outputs is successfulpropagation.

obtained, the sequence is added to the test set, and a faulEach individual has an associatéthess which measures
simulator is invoked to remove any additional faults detectdle test sequence quality in terms of fault detection, dynamic
by the sequence. Test generation then continues with the neoaitrollability and observability measures, and other factors.

fault in the fault list. The fitness function used in this work depends on the phase
of test generation, and will be explained in a later section.
A. Why Genetic Engineering? The population is initialized with random strings, and if any

agpropriate finite-state-machine sequences exist for the current

Finite-state-machine sequences derived for the fauIt-fr? )
. . . arget fault, they are used as seeds as well. A fault simulator
machine may not be valid for the faulty machines. Alsa

. : . 15 used to compute the fithess of each individual. Then the
a sequence that is valid for one faulty machine may be ~~ " . .
. : . . . evolutionary processes @election crossover and mutation
invalid for a different faulty machine. A sequengg derived . .
) e are used to generate an entirely new population from the
previously may be similar to the one needed for the current: . . . .
) . . . existing population. Evolution from one generation to the next
target fault; thus, reengineeringj, may provide a sequence. - : : .
. - N s continued until a sequence is found to activate the target
that fits the specific needs of the current situation. Genetic . . :
. ! . : ult or propagate its effects to the primary outputs or until
algorithms are able to genetically reengineer valid sequencesto . . .
. . . a_maximum number of generations is reached. To generate
fit those needs. Furthermore, conflicts encountered during state ) o LS
S . .2 T a hew population from the existing one, two individuals
justification have to be resolved. During state justification, a : : ; . )
o . . are selected, with selection biased toward more highly fit
sequence that correctly justifies one portion of the required;. : A
. ) individuals. The two individuals are crossed to create two
state may simultaneously set an incorrect value on other.. Lo . .
) L . - .. entirely new individuals, and each character in a new string
portion(s), resulting in conflicts. Nevertheless, the justificatian . . . .
: . IS_mutated with some small mutation probability. A mutation
sequences for each partial state may be viewed as partia

. N o Probability of 0.01 is used in this work, and since a binary
solutions in finding the justification sequence for the complec% ing is used mutation is done by simolv flioping the
state. Because important information about the assignm%ﬂf_j T%e WO néw individuals are the)r/1 plage)& ion:heg new

of primary inputs for justifying a specific part of a state is pulation, and this process continues until the new generation
entirely filled. At this point, the previous generation can be

intrinsically implied by each sequence, this information ma)
be useful in searching for the complete justification sequencg. . .
. 9 . plete jt q qelscarded. In our work, we use tournament selection without
Stated differently, each partial solution is a chromosome In . .
. ! . . replacement and uniform crossover. tiournament selection
the evolutionary process; the desired solution may be evolve

! . : .. without replacementtwo individuals are randomly chosen
from the population of chromosomes with appropriate fitness

. : o -and removed from the population, and the best is selected;
functions. The GA is capable of combining several parti L : .
?Ee two individuals are not replaced into the original (parent)

solutions, under arbitrary constraints, to form a comple . . S
solution to a problem via the evolutionary processes. populafuon until all other individuals have also been remqved.
Thus, it takes two passes through the parent population to
completely fill the new population. Ioniform crossoverbits
lIl. GENETIC ALGORITHMS from the two parents are swapped with probability 1/2 at each
The GA framework used in our work is similar to thestring position in generating the two offspring. A crossover
simple GA described by Goldberg [14]. The GA contains Brobability of 1 is used, i.e., the two parents are always
population ofstrings also callecchromosomesr individuals ~ crossed in generating the two offspring. Because selection is
in which each individual represents a sequence of test vectdr@sed toward more highly fit individuals, the average fitness is
A binary coding is used, and therefore, each character ire¥pected to increase from one generation to the next. However,
string represents the logic value to be applied to a primaifje best individual may appear in any generation.
input in a particular time frame. The population size used is
a function of the string length, which depends on both the
number of primary inputs and the test sequence length. Larger
populations are needed to accommodate longer individual tesDistinguishing, set, clear, and pseudoregister justification
sequences in order to maintain diversity. The test sequerseguences are the finite-state-machine sequences involved in
length is a function of the structural sequential depth, whetleis work. They are used as seeds for the GA during the cor-

IV. FINITE-STATE-MACHINE SEQUENCES
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Fig. 4. Types of distinguishing sequences.

responding fault-propagation and state-justification phasesolftputs. The most general case of generating a type A distin-
the seeds are valid for a given situation, no further processiggishing sequence is as follows. A fault effdot = (1/0)
is required; otherwise, we attempt to genetically engineer vaiil placed at the output of a flip-flop, while all other flip-
sequences from the seeds. Each class of finite-state-macliimes in the circuit are set to unknown values. Any sequence
sequences is described in this section. that makes theD observable at the primary outputs is a
distinguishing sequence of type A for the given flip-flop. This
type of sequence is able to distinguafi®¥ —1) pairs of states
T in the fault-free machine, wher&/ is the total number of
Distinguishing sequences are used to propagate fault effegis fiops in the circuit. In most circuits, however, the number
from the flip-flops to the primary outputs. We define thregs yyne A distinguishing sequences is small. In addition, this
different types of distinguishing sequences, as illustrated ¥be of sequence may not successfully distinguish the states

Fig. 4_‘ . L i in the fault-free machine from those in the faulty machine,
Definition 3: A distinguishing sequence of typefé flip- which is required when generating a test sequence for a

flop i is a sequence that produces wo distinct output respon§§r§et fault. Fortunately, fault effects are often propagated to

when applied to the fault-free machine for two initial stateﬁ]any flip-flops, and flip-flop values do not typically remain

ilri];?-tﬂ((j;:e\ialm g;e“h position and are independent of all OthelrJnknown during the course of test generation. This gives rise

S C . to distinguishing sequences of types B and C.
Definition 4: A distinguishing sequence of typef@r flip- NI .
flop i is a sequence that produces two distinct output responseé distinguishing sequence of type B or C for a flip-flop

when applied to the fault-free machine with flip-flog= 0 (or IS Specific to a target faulty machi-ne (machine resulting from

1) and applied to the faulty machine with flip-flap= 1 (or the presence of a_target fault). Gl\_/en a fault-free macldne

0), independent of the values of all other flip-flops. and a correspondlpg- fauity mgchldé,-a type B sequence
Definition 5: A distinguishing sequence of typefar fip- Would be able to distinguisB*¥—1) pairs of states between

flop i is a sequence that produces two distinct output respongégchinesG and F. On the other hand, a type C sequence

istinqui N—M-— i
when applied to the fault-free machine with flip-flop= 0 (or would distinguish 0n|y22.( Y pairs Of_ _states, where/
1) and applied to the faulty machine with flip-fiap= 1 (or denotes the number of flip-flops with specified values. It should

0) while one or more of the other flip-flops have specific logiP® Noted that distinguishing sequences of types A and B are
values. more powerful than those of type C since more pairs of states
Type A distinguishing sequences distinguish two statéliffering in a given flip-flop can be distinguished by the

of the samemachine, while types B and C distinguishingg€duences of types A and B for flip-flap
sequences distinguish states on tdifferent machines. A~ While distinguishing sequences of type A are capable of
distinguishing sequence of type C is similar to a type glstlngwshlng two different fault-free Stateﬁfl and STQ,
sequence, except that a partial state (i.e., a subset of flip-floffy may not necessarily be able to distinguish the state
is assigned to a specific value. The valzdn the state in 571 in fault-free machineG from the stateST: in faulty
Fig. 4 denotes an unknown, or more preciselydan’t care machine F'. Nevertheless, a type A sequence may be very
value, andS in a state represents a string of specific valuggmilar to a sequence that is able to distinguish the two states
(e.g.,1 or 0). Note that, because the distinguishing sequenciés machinesG' and F'. Therefore, it is helpful to seed the
of type C depend on a partial stageof the machine, they may GA with distinguishing sequences of type A in searching
not necessarily be applicable directly from any starting statéor a successful distinguishing sequence. Carrying this idea
A distinguishing sequence associated with a flip-flop cdorther, when a distinguishing sequence of type B or C is
propagate a fault effect from the given flip-flop to the primarfjound for a certain faulyf,, that sequence may not be directly

A. Distinguishing Sequences
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applicable under a different faulf,. A similar argument Sequences of type C may themselves be shorter than the length
applies in this case: the previously derived distinguishingf a GA individual, depending on the time frame in which the
sequence may be used as a seed for the GA to help findtates are distinguished.

valid sequence. The sequences generated in [12] are similaFor flip-flops that do not have an associated distinguishing
to the type A distinguishing sequences, except that they wesequence of any type, an observability value is used to indicate
generated using BDD’s; no pruning of sequences was dohew observable the flip-flop is in the GA framework. Initially,
and dynamically generated sequences targeting specific faaltsflip-flops in the circuit are set to a certain observability
were not used. When the sequences fail to distinguish the statalsie. As time progresses, these observabilities for the flip-
for specific faulty machines, no procedure was given to modifiops will decrease if no distinguishing sequence can be
the sequences. In contrast, we use a variety of distinguishimlgtained for them. A low observability value indicates that
sequences and modify them to get valid sequences for edcls difficult to generate a distinguishing sequence for that
fault. flip-flop. This measure of observability is much more accurate

A distinguishing sequence of type C requires a specifiban conventional observability values, and it enables the test
partial state in order to successfully propagat®drom a generator to avoid the propagation of fault effects to hard-to-
given flip-flop to the primary outputs. Under this restrictionpbserve flip-flops.
many flip-flops often have distinguishing sequences of type C
when the more powerful sequences of types A and B do not
exist. In many cases, a type C distinguishing sequence wofksSet and Clear Sequences
as well as a type A or B sequence because the state reachemlip-flop set and clear sequences are used in engineering a
at the end of fault activation is often contained within thgequence to justify a desired state. We define flip-flop set and
required set of states for the distinguishing sequence. clear sequences as follows:

Storing the type C distinguishing sequences may pose aDefinition 6: A flip-flop set sequends a sequence that sets
problem, however. Including the specific values of the requirgde associated flip-flop to a logic value of one.
partial stateS for the sequences may adversely affect both Definition 7: A flip-flop clear sequencés a sequence that
the execution time and memory storage. Furthermore, whelears the associated flip-flop to a logic value of zero.

a distinguishing sequence of type C is derived dynamically For each flip-flop that requires a specific value, the cor-
during test generation, it is difficult to identify the flip-flopsresponding set or clear sequence is used as a seed in the
which require specific values. Thus, instead of storing ti®A. A set of flip-flop set and clear sequences is pregener-
values for various subsets of flip-flops, a distinguishing poweted prior to test generation. Similar to distinguishing power,

is associated with each distinguishing sequence to indicate haw associated setting (clearingpwer is maintained which

well the sequence distinguishes between states. As a cornsdicates the sequence’s ability to set (clear) the given flip-
quence, the distinguishing power also indirectly indicates haffep starting from an unknown starting state. When a flip-flop
well a fault effect will propagate from the corresponding flipset (clear) sequence is obtained, it is given a minimal power.
flop. Although the state-containment information is missing foks test generation progresses, the associated powers of these
these distinguishing sequences, they are still useful as seselguences are dynamically updated, and sequences having low
for the GA to evolve an effective distinguishing sequenc@owers are pruned. New flip-flop set and clear sequences may
The distinguishing power of every corresponding sequencebis dynamically generated and added to the set during the
updated for each successful and unsuccessful GA applicatioourse of test generation.

All three types of distinguishing sequence can be generated flip-flop set (clear) sequence associated with a flip-flop
by the GA. Before test generation begins, the GA is set inistintended to set (clear) the flip-flop starting from any given
preprocessing stage to compute any distinguishing sequersiase. Any sequence that can set (clear) a given flip-flop
of type A. The sequence length of each individual in the Gétarting from an unknown state is a candidate set (clear)
population is set equal to the length used in the third stagequence for théth flip-flop. Such sequences are caltgde A
of test generation, i.e., four times the sequential depth of tbequences. Type A sequences are generated in a preprocessing
circuit. The actual length of a type A sequence depends step prior to test generation with the sequence length set to four
the time frame in which the states are distinguished. Typienes the sequential depth of the circuit, but the actual length
B sequences could be generated in a similar manner, givefra type A sequence depends on the time frame in which the
information about a particular faulty circuit, but it is likelyflip-flop values are set or cleared. Although a large percentage
to add to execution time without adding appreciable valuef flip-flops have type A set/clear sequences, a small number
During the test generation process, derivation and pruning aff flip-flops remain hard to control. These flip-flops without
distinguishing sequences of type C are done concurrently agge A set/clear sequences may have type B sequences, which
adaptively. The GA is initialized with random sequences, arate sequences dynamically generated for the fault-free machine
any distinguishing sequences of the flip-flops to which faultluring test generation. Type B sequences may require specific
effects have propagated are used as seeds in place of somsating partial states. As the state becomes defined during the
the random sequences in the fault propagation phase. If twmrse of test generation, it may be easier to generate type B
seeds are longer than the length of a GA individual, the extsat/clear sequences. The length of a type B sequence depends
vectors at the end of the seed are truncated. If the seeds @rethe time frame in which the flip-flop values are set or
shorter, they are padded at the end with extra random vectaigared. It should be noted that type B set/clear sequences are
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Fig. 5. Genetic engineering of state justification sequence.

not guaranteed to be successful in setting/clearing a given flipdn terms of storage requirements, symbolic techniques for
flop from any starting state. Thus, type A set/clear sequencate justification introduced in the past are often memory
are more powerful than type B sequences. Both sequenaesfficient for large circuits; moreover, storing justification
of types A and B may become invalid in the presence afformation for the entire state space in the circuit would
a fault. Furthermore, conflicting values may be encounteregquire a huge storage space. For example, in a circuit &ith
when applying the set and clear sequences for different fliflip-flops, as many ag” states may have to be stored, along
flops simultaneously. Conflicts can sometimes be resolved Wwith justification sequences for each state. On the other hand,
the GA. However, more powerful sequences may be needéthe N flip-flops are partitioned into pseudoregisters, which
to reduce the frequency of conflicts. are groups oft flip-flops representing portions of the entire
state, only(N/k)2* pseudoregister states and sequences have
to be stored. This is of linear ordé©(N)) whenk is small.

C. Pseudoregister Justification Sequences In this work, typical values of: are less than six.

Sequences that are able to justify multiple flip-flop values
simultaneously are more powerful than single flip-flop set
and clear sequences. We patrtition the flip-flops into severalThe test generator is comprised of three stages; each stage
groups, callegpbseudoregistersand the justification sequencesnvolves several passes through the fault list, and a stage is
for pseudo-register states are defined as follows. finished when little or no improvement in fault coverage is

Definition 8: A pseudoregister justification sequeniea achieved. Faults are targeted individually within each stage,
sequence that is able to justify the required flip-flop values fand GA’s are used to activate a fault and propagate the fault
a particular pseudoregister. effects to the primary outputs. Different test sequence lengths

Thus, set and clear sequences are a special case of pfmuindividuals are used in the GA population for the different
doregister justification sequences having a size of 1. For eathges. Since the time required for the fithess evaluation is
pseudoregister that requires a specific value, any correspondiirgctly proportional to the test sequence length, the shorter
pseudoregister justification sequences are used as seeds irsdl@ences are tried first, and faults are removed from the fault
GA. The goal is to genetically combine the pseudoregistist once they are detected.
justification sequences to engineer the desired solution for theTest generation for a target fault is divided irfault acti-
complete state, as shown in Fig. 5. vation and fault propagationphases. Fault activation excites

A pseudoregister justification sequensg is a sequence the fault and propagates its effects to a primary output or
capable of setting pseudoregisteto a specific staté. Justi- at least one flip-flop. Fault propagation propagates the fault
fication sequences of types A and B are generated as for #ffects from one or more flip-flops to a primary output,
set and clear sequences. A justification sequence of typepéssibly through several time frames, with the assistance of
is a sequence that is able to justify a desired pseudoregisietinguishing sequences. Single-time-frame mode and state
state starting from an unknown state. Type A sequences arstification are used for fault activation when no sequence
generated statically in a preprocessing step; the GA sequenapable of exciting the target fault and propagating its effects
length used is four times the sequential depth of the circuitt one or more flip-flops is generated. Fig. 6 displays the
but the actual length of a type A sequence depends on feeudocode for the two-phase test generation algorithm within
time frame in which the pseudoregister state is justifiedach stage of the test generator.

Type B sequences are generated dynamically for the fault-Before test generation begins, the GA is used in a pre-
free machine during test generation, and may require specffibcessing stage to compute any type A finite-state-machine
partial starting states. The length of a type B sequence depesedguences. During the test generation process, derivation and
on the time frame in which the pseudoregister state is justifiggtuning of sequences are done concurrently and adaptively.
Justification powers are maintained for each sequence arte GA is initialized with random sequences, and any relevant
dynamically updated during the course of test generatidinite-state-machine sequences are used as seeds in place of
Depending on the sizes of the pseudoregisters, the numbeme of the random sequences in the fault activation and fault
of type A pseudoregister justification sequences varies. Largeopagation phases. The sequences and their corresponding
pseudoregisters are able to hold more states, but fewer of theeeer indexes are pruned after each successful and unsuc-
states are likely to have type A sequences. cessful application.

V. TEST GENERATION ALGORITHM
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Generate sets of type-A finite-state-machine sequences
For all undetected faults do
Pick a target fault
/* fault activation phase */
Call GA to generate a sequence that activates the target fault
If no sequence generated then
/* single-time-frame activation */
Generate a vector in single-time-frame mode
If a vector found
Relaz the state obtained
/* state justification */
Seed GA unth appropriate set, clear, or pseudo-register justification sequences
Call GA to generate a justification sequence
Update the justification powers of the required set, clear, and pseudo-register justification
sequences and the controllabilities of the FF'’s
If an activation sequence s found then
Drop oll faults detected by the activation sequence
/* fault propagation phase */
If target foult not detected then
Seed GA with distinguishing sequences corresponding to FF’s with fault effects
Call GA to propagate fault effects to a PO
If sequence derived by GA is successful then
Drop all faults detected by the sequence
Update distinguishing powers of the sequences and observabilities of the FF’s

Fig. 6. Test generation algorithm.

Because the number of finite-state-machine sequendasltis still activated bys’, then theith flip-flop can be relaxed
grows over time, the lists of sequences are pruned adaptividythe unknown valueX. This implies that activation of the
to increase the power and accuracy of these sequencegaiget fault does not depend on the assignmegt.ofFhe order
justifying and distinguishing the states. To improve staie which the flip-flops are relaxed is determined in a two-
justification and fault detection, flip-flops which are hard ttevel greedy fashion: first, the order of the pseudoregisters is
control or hard to observe are identified dynamically during thaetermined from the least controllable to the most controllable
process; as a result, justification of difficult states in the firpiseudoregister state; then, the order of the flip-flops within the
phase and propagation of fault effects to the hard-to-obsepseudoregister is determined from the least controllable to the
flip-flops in the first and second phases may be avoided. Atlost controllable flip-flop.
faults are targeted until little or no more improvement is made. When state relaxation is finished, the relaxed state has
to be justified. The GA is seeded with the set, clear, and
pseudoregister justification sequences corresponding to the
- o state to be justified. Pseudoregister justification sequences are

When activation of the target fault is difficult and the GAsgjected such that the corresponding pseudoregister states they
fails to generate an activation sequence in the first phasey&ify arecoveredby the desired relaxed state. The remaining
second attempt is made to activate the fault in a single tifigyiyiguals, if any, are seeded with random sequences. The GA
frame. The aim here is to engineer a vector, composed |pfgins jts search by genetically reengineering and combining
primary input and flip-flop values, capable of exciting thghe partial solutions to form the complete solution that justifies

target fault and propagating its effects to at least one flip-flqRe state with fitness functions that guide the GA to a sequence
in a single time frame. The target fault is activated when thga¢ successfully justifies the relaxed state.

fault is excited, and its effects propagate to one or more flip-
flops or primary outputs in the single time frame. Initially, the
GA is seeded with random vectors, and the evolution procé%s
is continued until a vector is found or a maximum of eight The seeded sequences aim to justify the relaxed state. Up to
generations is reached. The fitness function guides the sedicé sequences are seeded for each pseudoregister state. The
by favoring individuals that activate the target fault. Becauset, clear, and pseudoregister justification sequences may vary
an unjustifiable state is undesirable, the fitness function usedength. Type B sequences may be shorter than the length of
the dynamic controllability values of the flip-flops to guide than individual in the GA population, and type A sequences may
search toward more easily justifiable states. be shorter or longer. If a sequence is too long, the extra vectors
With these measures as guides to search for a solution, thigoen the beginning of the sequence are removed. The vectors
is still no guarantee that the resulting state is indeed justifiabé.the end of the sequence may still be effective in achieving
Therefore, a further relaxation step is performed. £etenote the desired state. The situation is different for sequences that
a state to be justified ang the ith flip-flop in stateS. The are too short. Unlike distinguishing sequences, where the time
stateS’ is obtained by inverting the value ef. If the target frame in which the fault effects propagate to the primary

A. The Single-Time-Frame Mode

State Justification Phase
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Padded with random vectors

. Hard-to- 4 Hard-to-
L. control __| control
Starting state Desired state Starting state Desired state

() (b)

Fig. 7. Two methods of seeding the justification sequences.

outputs is not an important issue, the partial justificatioor distinguishing states, but are also useful as controllabil-
sequences have to arrive at their target states simultaneoui$jy.and observability measures to guide the test generation
This imposes several constraints on the problem. Two possipl®cess.
ways of aligning the sequences corresponding to the targetet C! denote the controllability of pseudoregisterfor
pseudoregister states are illustrated in Fig. 7. The first methstdte t. A higher C! value indicates that pseudoregister
left aligns all state justification seeds beginning with the staite more easily controlled to state Initially, C! is set to
in which the previous sequence left off, as shown in Fig. 7(a)5 for all pseudoregister statésof each pseudoregister. A
The second method right aligns the seeds ending at the tipseudoregister with a justification sequence for stégegiven
frame corresponding to the desired state, as shown in Fig. 7@)controllability valuec,,;,, where ¢, > 15; e, varies
Any missing vectors are padded with random vectors. Théth different pseudoregister sizes, with highgg;, values
length of the state justification sequence derived may beéven to larger pseudoregisters. During test generat{gh,
shorter than the length of an individual in the GA populations decremented by every time justification of state for
Simulation is performed for each candidate sequence, and fiseudoregistei fails and is incremented by otherwise. The
state reached after each vector is compared against the degi@ader indicators of all corresponding sequences are updated
state. Once the desired state is reached, any extra vectorsfareach successful and unsuccessful GA application.
truncated. While the second method may appear to have &his measure of controllability helps in relaxation of the
higher chance of success in justifying the desired state becasisge during the single-time-frame mode by avoiding hard-to-
all seeds end at the same time frame, the dominant facpostify pseudoregister states. For example, a state that is easily
in deriving the desired justification sequence is the abilifystifiable is favored over a state that is hard to justify. The
to justify the hard-to-control portions of the state. The righdynamic controllability also helps during state justification by
alignment scheme does not leave room for correction if tlgeiiding the GA toward discovering and/or traversing through
desired state is not justified at the end of the sequence lendithrd-to-justify states.
On the other hand, left aligning the vectors allows the GA to Analogous reasoning goes for the observability of the flip-
truncate the sequence to the length of the seed that correspdtags. LetO; be the observability value for flip-flop. O; is
to the hardest to control pseudoregister. Combining partialtially set t0 o, (0min > 15) for flip-flops having distin-
solutions of different lengths to form a complete solution iguishing sequences and 15 for the remaining flip-flops. During
a very difficult problem; neither a left nor a right alignmentest generation(; is decremented by 1 if no distinguishing
scheme guarantees convergence to a sequence that jussiegience can be obtained for flip-flopnd incremented by 1 if
the desired state. However, experiments conducted to comptie application of its distinguishing sequence is successful. A
the two alignment approaches confirmed that left alignmentl@wy value indicates that it is difficult to propagate a fault effect
more likely to derive the justifying sequence in most case® a primary output from that flip-flop. This measure enables
Therefore, the left-alignment method is used. propagation of fault effects to hard-to-observe flip-flops to be
The GA evolves the seeded sequences over several genavaided.
tions to find a sequence that justifies the desired relaxed state.
The fitness function is biased toward favoring justification .
of harder to control pseudoregister states. As a result, tHe Fitness Functions
hard-to-control portions of the state will be justified first. Since the fault activation and fault propagation phases target
different goals, their corresponding fitness functions differ. The

parameters that affect the fithess of an individual in the GA
C. Secondary Effect of the Power Indicators are as follows.

The different power indicators associated with the finite- P, Fault detection by the individual.
state-machine sequences are not only able to assist in justifyind®» Sum of dynamic controllabilities for pseudoregisters.
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TABLE |
CHARACTERISTICS OF SYNTHESIZED CIRCUITS

Output

Circuit I Seq. Depth FF’s PI's PO’s Faults

Output partial cones am2910 4 87 20 16 2391
mult16 9 55 18 33 1708
Good FF partial cones divl6 19 50 33 34 2147
pcont2 3 24 9 8 11,300
[> Poor FF partial cones piir8o 5 56 9 8 19,920
piir8 5 56 9 8 29,689

gates weighted more heavily. Partial cones are computed and
set up for the primary outputs and flip-flops. Fig. 8 illustrates
the setup of partial cones; each partial cone has a depth
Gircuit depth of one-fifth the circuit's depth. Events are weighted more
heavily if they are inside partial cones of the PO’s or flip-
flops with more powerful distinguishing sequences; events
inside the partial cones of the hard-to-observe flip-flops are
P5; Matches of pseudoregister values during state justificaeighted more lightly. Events inside the partial cones of flip-

1/5 of circuit depth

Fig. 8. Output and flip-flop partial cones.

tion. flops having moderate observability values and events outside
P, Sum of distinguishing powers for the distinguishinghe partial cones are given a weight of 1. The partial cones

sequences of flip-flops with fault effects. are recomputed at the beginning of each of the three GA
Ps Weighted faulty circuit activity induced. stages in order to include cones of flip-flops for which new
Ps; Number of new states visited by the individual. distinguishing sequences have been obtained or observability

ParameterP; is self-explanatory, in particular, during thevalues have decreasek is used to expand the search space.
fault propagation phase. It is included in the fault activatioi was suggested in [29] and [30] that visiting as many
phase to cover faults that propagate directly to the primagifferent states as possible helps to detect more faults. The
outputs in the time frame in which they are excitefl, fitness functions thus favor visiting more states when the fault
indicates the quality of the state to be justified. Maximizingetection count drops very low. Hendg; is considered in the
P, makes the state more easily justifiable in the single-timéinal stage only. Different weights are given to each parameter
frame mode, and also avoids unjustifiable states. On the otferthe fitness computation during the two phases (see the
hand, minimizing?, expands the search space by visitingottom of the page).
hard-to-justify states. A sequence that justifies a hard-to-justifyIn the fault activation phase, the aim is to excite the fault
pseudoregister state is favored during test generation sieel propagate the fault effects to as many good flip-flops
the GA is more likely to bring the circuit to previouslyas possible with short sequences and minimal time, where
unexplored state spaces as a consequefgguides the GA good flip-flops are those with more powerful distinguishing
to match the required pseudoregister values in the state toseguences; thus, the fitness function places a heavier weight
justified, from the least controllable to the most controllablen the quality of flip-flops reached by the fault effects. Any
pseudoregister state. If only set and clear sequences are upeditive value on parametét, implies that the target fault is
the pseudoregister states are replaced by flip-flop valueseicited and the fault effects propagated to at least one flip-flop.
P3. P, measures the quality of the set of flip-flops reachdflno sequence is obtained to activate the current target fault,
by the fault effects. Maximizing®; increases the probability single-time-frame fault activation and state justification are
that the fault effects reach flip-flops having more powerfulsed in a second attempt to activate the fault. In this case, the
distinguishing sequences, and thus indirectly improves tfitness function favors states that can be more easily justified in
chances for detectionPs measures the number of eventshe single-time-frame activation, and the fithess function favors
generated in the faulty circuit, with events on more observatitard-to-reach states during state justification because hard-to-

Fault activation phase:
Multiple time frame: Single time frame:
fitness= 0.2P, + 0.7P, +0.1(Ps + PJ)  fitness= 0.1P; + 0.5P, + 0.3P 4+ 0.2(P5 + P})
State justification:
fitness= 0.1, + 0.7P;
+0.2(min(Py)* + Ps + P))
*:min(z) = Constant- z
Fault propagation phase:
fitness= 0.8P, + 0.2(Py + P5 + Pg)  evaluated only in the final GA stage.
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TABLE I
GATE(O) TEST GENERATION RESULTS
Circuit | Total | HITEC[7] | GATEST[27] | CRIS[15] | GATTO[20] IGATE(0)
Faults | Det Vec Det Vec Det Vec Det Vec Det Vec Dist
5298 308 265 306 265 161 253 476 - - 264 239 7
s344 342 328 142 329 95 328 115 - - 329 109 8
$382 399 363 4931 | 347 281 273 246 - - 363 581 6
5400 426 383 4309 | 365 280 357 758 - - 382 3369 11
s444 474 414 2240 | 406 275 397 519 - - 420 1393 9
5526 555 365 2232 417 281 428 692 - - 446 2867 9
s641 467 404 216 404 139 398 628 - - 404 180 17
s713 581 476 194 476 128 475 1124 - - 476 147 17
$820 850 813 984 517 146 451 1381 - - 621 465 9
5832 870 817 981 539 150 370 1328 - - 606 703 9
s1196 1242 1239 453 1232 347 1180 2744 | 1226 5202 | 1236 549 13
s1238 1355 1283 478 1274 383 1229 4313 | 1274 4672 | 1281 504 12
51423 1515 776 177 1222 663 1167 2696 1265 3394 1393 4044 30
51488 1486 1444 1294 | 1392 243 1355 1960 | 1344 631 1378 542 5
51494 1506 1453 1407 | 1416 245 1357 1928 | 1277 912 1354 581 6
86378 4603 3238 941 3175 511 3029 1255 | 3277 1132 | 3447 10,500 94
s35932 | 39,094 | 34,902 240 | 35,003 200 | 34,481 1525 | 32,943 563 | 35,100 386 301
am2910 | 2391 2164 874 | 2163 745 - - - - 2195 2206 71
mult16 1708 1640 273 1653 204 - - - - 1664 915 32
divl6 2147 1665 189 1739 634 - - - - 1802 4481 3
peont2 | 11,300 | 3354 7 6826 272 - - - - 6837 3452 0
piir8o 19,920 | 14,221 347 | 15,013 531 - - - - 15,072 506 0
piir8 29,689 | 11,131 31 - - - - - - 18,140 603 0

Det: number of faults detected Vec: test set length Dist: number of distinguishing sequences generated

Highest numbers of detections are highlighted

reach states may be necessary in order to reach a desired $at8election of the Target Fault
that was previously unvisited. In the fault propagation phase,smCe only forward propagation is involved, the target fault

the goal is to find a sequence that will propagate the fayll g0 cteq intelligently. A fault is selected when its fault

effects to a primary output, so the emphasis is placed on fa&#ects have propagated to a flip-flop having a distinguishing

detection. sequence of maximal distinguishing power. By selecting this
fault, the activation phase can be omitted because the effects
of the targeted fault have already reached at least one flip-flop.

The distinguishing or justification power associated with ?hus, the fault propagation phase can be entered immediately.

sequence shoulq indicate how well the sequence can propagglg target fault selected in this manner is likely to have a
a fault effect or justify a state under various requirements f?n'lrgher probability of detection.

different faults. When a sequen&® is obtained, a minimal . . T
ower is qiven to the sequencs. is aoplied aaain when it If no fault has reached any flip-flop having a distinguishing
b g q 0 PP g seguence, selection of the target fault is biased toward the fault

is needed. For instance, when the same partial state net%a has reached the areatest number of flip-fi H
to be justified at a later time, the corresponding pseudo- o € greatest number o Tiip-flops. However,
t?a? activation phase is not omitted in this case.

register justification sequence will be seeded. In the case
distinguishing sequences, when another fault effect reaches gheqier Implementation Details
same flip-flop, the associated distinguishing sequence is used

again to guide the GA. If a sequence is found and is the samé€cause one fault is targeted at a time and the majority of
as S, the power forS, is incremented. If the sequence foundime spent by the GA is in the fitness evaluation, parallelism
differs from So, an additional sequenc§; is added to the @mong the individuals can be exploited. Therefore, parallel-
corresponding set of sequences, and the powers of$oéind  Pattern simulation [28] is used to speed up the process. During
S, are incremented. On the other hand, if no sequence is foutRft generation, 32 sequences are simulated simultaneously,
the power ofS, is decremented. If the power drops below thé/lth values bit packed into 32-bit words during simulation.
minimal value,S, is removed from future consideration. Fault-free simulation is first performed, followed by insertion
When the GA cannot be seeded with any useful sequen&@ghe fault and faulty circuit evaluation, in which events start
from a set of flip-flops, it is initialized with random sequence&xclusively from the faulty gate.
If a sequence is derived, it becomes a candidate sequence forargeting untestable faults is a waste of time because
the respective pseudoregisters or flip-flops in the set. It showlatestable faults cannot be identified using our approach. Thus,
be noted that this sequence may be more powerful for sothe HITEC deterministic test generator [7] is used after the
partial states, while less powerful for others in the set, but fisst GA stage to identify and remove many of the untestable
the sequences are further pruned, the unfit ones are eventuailts. A small time limit of 0.4 s/fault is used in an initial
weeded out. HITEC pass through the fault list to minimize the execution

E. Adaptive Pruning of Sequences
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TABLE I
COMPARISON OF THREE EXPERIMENTS
Circuit | Total IGATE(0) IGATE(1) IGATE(S)
Faults Det Vec DI Det Vec SC Det Vec PRS
5298 308 264 239 7 2685 204 23 265 232 60
s344 342 329 109 8 329 164 19 329 120 48
5382 399 363 581 6 362 1847 33 362 2047 104
s400 426 382 3369 11 382 2900 29 382 2162 112
5444 474 420 1393 9 423 1269 31 424 1970 104
8526 555 446 2867 9 449 3820 22 448 1840 100
5641 467 404 180 17 404 203 34 404 265 64
s713 581 476 147 17 476 172 30 476 160 80
8820 850 621 465 9 702 197 14 814 924 26
5832 870 606 703 9 718 370 10 816 965 26
51196 1242 1236 549 13 1235 555 37 1239 633 142
51238 1355 1281 504 12 1282 541 38 1283 589 143

51423 1515 1393 4044 30 1394 4316 118 1407 3680 596
51488 1486 1378 542 5 1442 392 23 1443 566 48
51494 1506 1354 581 6 1450 465 29 1452 639 14
$5378 4603 3447 10,500 94 3487 11,500 142 3556 7664 1449
535932 | 39,094 | 35,100 386 301 | 35,100 714 3289 | 35,100 223 13,365
am2910 2391 2195 2206 71 2195 2315 101 2198 3083 480
multl6 1708 1664 915 32 1664 985 87 1664 2121 280
div16 2147 1802 4481 3 1802 3705 100 1815 5589 446

peont2 11,300 6837 3452 (0 6837 3500 82 6837 5165 256
piir8o 19,920 | 15,072 506 0 15,072 604 75 15,072 600 300
piir8 29,689 | 18,140 603 1 18,140 700 75 18,206 493 580
Det: number of faults detected Vec: test set length DI: number of distinguishing sequences generated

SC: number of set and clear sequences generated
PRS: number of pseudo-register states with justification sequences
Highest numbers of detections are highlighted

time. If a large number of untestable faults is identified or ifesults obtained by using justification sequences of larger
only a small number of faults remains in the fault list, a secormbeudoregister sizes are reported in the third experiment. The
HITEC pass with a time limit of 2 s/fault is used. Any testest generators associated with these three schemes are labeled

sequences generated by HITEC are discarded. IGATE(n), wheren is the pseudoregister size used in the
test generator. IGATE(O) is the test generator that uses only
VI. EXPERIMENTAL RESULTS distinguishing sequences (no pseudoregister sequences for

. ) _ state justification), IGATE(1) utilizes justification sequences of
The test generator was implemented in C++; both ISCASER,¢ 1 seudoregisters, etc. Results for each test generator are

sequential benchmark circuits [13] and several SymheSi,ngen in this section. In addition, the effect of pseudoregister
circuits were used to evaluate its performance. All Circuil§,oq on state justification is discussed as well.

were evaluated on an HP 9000 J200 with 256-Mbyte RAM.
The characteristics of the synthesized circuits are as follows: ) o o
am2910 [31] is a 12-bit microprogram sequencer, mult16 f§ Results of Using Distinguishing Sequences Only
a 16-bit 2’s-complement shift-and-add multiplier, divl6 is a The first experiment involves the use of distinguishing
16 bit divider using repeated subtractions, pcont2 is an 8-Bigquences only in the test generator IGATE(0). The fault
controller for DSP applications, and piir8o and piir8 are botboverages of IGATE(0) are compared to fault coverages for
8-bit digital DSP filters. Table | displays the characteristics ofarious other test generators in Table Il. For each circuit,
the synthesized circuits. Structural sequential depth, numbettioé total number of collapsed faults is given, followed by
flip-flops, number of PI's, number of PO’s, and the total nunthe number of faults detected and the test set length for
ber of collapsed faults for each circuit are given in the tableeach test generator. The number of distinguishing sequences
Three experiments were conducted. The first experimeggnerated by our approach is also reported for each circuit.
involves the use of only distinguishing sequences duririthe first test generator is HITEC [7], a deterministic test
test generation. Neither single-time-frame fault activation ngenerator, followed by the GA-based test generators GATEST
state justification is applied in this case. Essentially, tH&7], CRIS [15], GATTO [20], and finally our test generator,
distinguishing sequences are applied whenever the target faGIATE(0). The GATEST results are an average of ten runs,
could be activated directly from the state reached after tbach beginning with a different random seed.
previous test sequences are applied. In the second experi-ault coverage is defined as the percentage of faults de-
ment, pseudoregister justification sequences of size 1 (ifegted. The best fault coverages are highlighted in bold.
set and clear sequences for individual flip-flops) are used i®m the table, the fault coverages achieved by IGATE(O)
seeds during the state justification phase, and distinguishang significantly higher than those obtained by the other
sequences are used during fault propagation. Finally, tB&\-based test generators for most of the circuits. For the hard-
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TABLE IV
RESuLTS AT VARIOUS CHECKPOINTS FORIGATE(O)
Circuit | FF’s Best of previous
GA-based Test Gen’s IGATE(0)

Det Vec [ TestGen Chkpt | Det A Det Vec Time
5526 21 1 431 +3 556  3.28 min
2 439 +11 907  10.9 min
428 692 CRIS[15] 3 446 +18 2867 35.0 min
5820 5 1 471 -46 117 32.0 sec
2 547 +30 373  16.1 min
517 146 | GATEST|27] 3 621 +104 465 56.0 min
5832 5 1 476 -63 122 37.5 sec
2 581 +42 303 15.3 min
539 150 | GATEST[27] 3 606 +67 703 1.08 hr
51423 74 1 1381 +116 3760 23.5 min
2 1393 +128 4044 1.42 hr
1265 3394 | GATTO[20] 3 1393 +128 4044 3.66 hr
51488 6 1 1237 -155 194  4.07 min
2 1271 -121 329  15.6 min
1392 243 | GATEST[27] 3 1378 -14 542 18.5 min
51494 6 1 1203 -213 109 3.12 min
2 1344 =72 295 18.1 min
1416 245 | GATEST[27] 3 1354 -62 581 30.1 min
s5378 179 1 3425 +148 2010 1.33 hr
2 3436 +159 3170 4.00 hr
3277 1132 | GATTOI20] 3 3447 +170 10,500 13.7 hr
$35932 | 1728 1 35,099 +90 225 17.4 hr
2 35,100 +91 386 22.2 hr
35,003 200 | GATEST[27] 3 35,100 +91 386 58.1 hr
am2910 87 1 2118 -48 512 8.80 min
2 2167 +3 1190 39.9 min
2163 745 | GATESTI[27] 3 2194 +30 2206 1.67 hr
div16 50 1 1713 -26 725 1.84 hr
2 1770 +31 1530 8.89 hr
1739 634 | GATEST[27] 3 1802 +63 4481 15.0 hr

Check Point k: end of GA stage k
A Det: improvement over the best coverage among previous GA-based test generators

to-test ISCAS89 circuits, such agl00, s444, s526, s1423, faults in the circuits. Pseudoregister justification sequences of
s5378, ands35932, where long execution times are requiredarious sizes are used to aid state justification in IGETE
by HITEC, the fault coverages achieved by IGATE(0) arerheren > 0. A comparison of fault coverages for IGATE(O),
significantly higher than those for the other GA-based teKBATE(1), and IGATE(6) is given in Table Ill. The number
generators, and often higher than the HITEC fault coveragesfaults detected and the test set lengths are given for each
as well. IGATE(0) outperforms both HITEC and GATESTtest generator. The number of distinguishing sequences (DI),
for all the synthesized circuits. However, IGATE(0) does natet/clear sequences (SC), and the number of pseudoregis-
perform as well as HITEC fos820, s832, s1488, ands1494. ter states for which justification sequences were generated
These circuits contain faults that require specific and oftéRRS) are given for IGATE(0), IGATE(1), and IGATE(6),
long sequences for fault activation. None of the previous GAespectively. Results for IGATE(6) are obtained using pseu-
based test generators could match the results of HITEC fiwregisters of size 6. The best fault coverage numbers are
these circuits since only HITEC was able to generate the exabown in bold. The numbers of distinguishing sequences
sequences required to excite the faults. The test sets obtaigederated by IGATE(1) and IGATE(6) are similar to the
by IGATE(O) are shorter than those obtained by HITEC, everumber obtained by IGATE(0).
when higher fault coverages are achieved by IGATE(0). TheFor circuits that IGATE(0) and the previous GA-based
test sets are shorter than those obtained by CRIS and GAT#St generators did poorly on, namels820, s832, 51488,
for most of the circuits. The test set lengths are comparatdad s1494, which require specific justification sequences,
to those for GATEST, although sometimes longer due to th€ ATE(1) and IGATE(6) were able to detect many more faults
two-phase strategy of activating and propagating faults. Veglyie to single-time-frame fault activation and state justification.
high fault coverages are obtained very quickly for most of thiehe fault coverages are as high as those obtained by HITEC
circuits, as will be shown in the later part of this discussionfor IGATE(6). For s820, IGATE(1) detected 702 faults and
) ) ] o IGATE(6) detected 814 faults, while only 517, 451, and

B. Adding Single-Time-Frame Activation 621 faults were detected by GATEST[27], CRIS[15], and
and State Justification IGATE(0), respectively; more than 30% improvement in fault

In the second and third experiments, single-time-fram@verage was obtained. For the larger and more complex cir-
mode with state justification is used to target hard-to-activateits, s1423, s5378, ands35932, outstanding fault coverages
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TABLE V
REsuLTS AT VARIOUS CHECKPOINTS FORIGATE(1) AND IGATE(6)

Circuit | FE’s IGATE(1) IGATE(S)
Chkpt | Det A Det Vec Time | Det A Det Vec Time
5526 21 1 430 +2 525 1.10 min | 438 +10 602 2.70 min
2 440 +12 1305 10.0 min | 448 +20 1840 15.2 min
3 449 +21 3820 20.0 min | 448 +20 1840 40.1 min
8820 5 1 471 -46 127 43.0 scc | 649 +132 359  4.00 min
2 702 +185 197 16.3 min | 808 +291 858 15.0 min
3 702 +185 197 36.0 min | 814 +297 956 34.1 min
5832 5 1 422 -117 112 47.5 sec | 781 4242 534 4.30 min
2 582 +43 303 15.3 min | 798 +259 687 18.2 min
3 718 +179 370 38.1 min | 817 +278 926  33.0 min
51423 74 1 1381 +116 2651 13.5 min | 1378 +113 991  25.0 min
2 1393 +128 3611  20.1 min | 1394 +129 2341 45.3 min
3 1394 +129 4316 1.10 hr | 1407 +142 3680 1.10 hr
51488 6 1 1392 +0 235 4.12 min | 1380 -12 188  3.00 min
2 1435 +43 318 18.6 min | 1442 +50 272 9.90 min
3 1442 +50 392 23.5 min | 1443 +51 566  10.1 min
51494 6 1 1363 -53 239 4.12 min | 1422 +6 309 4.50 min
2 1448 +32 415 8.1 min | 1443 +27 521 8.2 min
3 1450 +34 436 12.1 min | 1452 +36 639 11.0 min
sb378 179 1 3421 +144 2155 1.24 hr | 3480 +203 2335 3.50 hr
2 3471 +194 6742 9.90 hr | 3515 +238 5035 9.1 hr
3 3487 +210 11,500 13.7 hr | 3556 +279 7664 21.5 hr
s35932 | 1728 1 35,096 +87 269 4.1 hr | 35,100 +91 223 6.70 hr
2 35,099 490 482 7.0 hr | 35,100 +91 223 7.1 hr
3 35,100 491 714 16.1 hr | 35,100 491 223 8.5 hr
am2910 87 1 2160 -3 654 6.90 min | 2160 -3 758  7.00 min
2 2189 +26 1707 23.8 min | 2184 +21 2103 22.1 min
3 2198 +35 2990 1.37 hr | 2195 +32 2984 45.4 min
divi6 50 1 1707 -32 623  20.5 min | 1691 -48 669 18.9 min
2 1768 +29 1456 1.19 hr | 1773 +34 1455 1.10 hr
3 1781 +42 3507 6.5 hr | 1815 +76 5589 13.5 hr

Check Point k: end of GA stage k

A Det: improvement over the best coverage among previous GA-based test generators

were obtained by IGATE(6) when compared to IGATE(O)tage to the next, with longer sequences used to target the
which already achieved very high fault coverages. Simil&marder faults. TheADet column shows the difference in fault
trends are seen in the results for the synthesized circuits.cloverages between our test generators and the best achieved
terms of test set sizes, the test sets obtained by IGATEfy) any of the previous GA-based test generators. The fault
and IGATE(6) are nearly the same size as those obtained dnverages at the end of the first GA stage are already higher
IGATE(0), which are generally shorter than those obtained liyan the final fault coverages of the other test generators for
HITEC when comparable fault coverages are obtained. Theny circuits. Many of these execution times are much shorter
test sets are also shorter than those obtained by CRIS tiean those required by HITEC [7]. The user may wish to stop
most of the circuits. IGATE(0), IGATE(1), and IGATE(6) alsothe test generation process if the fault coverage has reached a
achieve very high fault coverages very quickly, as will beatisfactory level at the end of the first or second stage.
discussed next.

D. Effect of Pseudoregister Sizes

C. Execution Times Table VI compares the effects of different pseudoregister

Very high fault coverages were obtained using a smalizes. The numbers of distinct pseudoregister states (PRS) for
number of vectors in a short time by all three test generatovghich justification sequences could be generated by IGATE
This phenomenon is illustrated in Tables IV and V. are reported, and results for three pseudoregister sizes are

The best results of the previous GA-based test generatel®wn: 2, 4, and 6. The highest numbers of faults detected are
shown in Table Il are listed in Table IV. The test generatoshown in bold, and the italicized numbers indicate fault de-
number of faults detected, and test set size are showntéttions which are higher than any results previously obtained
Table 1V, followed by the results of IGATE(0). Table V showsby other GA-based test generators.
the results for IGATE(1) and IGATE(6). The run times at One interesting statistic is the number of distinct pseudo-
three checkpoints are displayed for IGATE(0), IGATE(1), ancegister states for which justification sequences could be
IGATE(6) in these two tables. These checkpoints were placddrived. This number is indicated in the “PRS” column of
at the end of each GA stage. Recall that sequence lengthes table. Take, for instance, circui820 which has only five
for the individuals in the population are doubled from on#ip-flops. When the pseudoregister size is 2, the flip-flops are
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TABLE VI
EFFECTS OFPSEUDOREGISTERSIZES
Circuit | Total Total Various Pseudo-Register Sizes
Faults FF’s IGATE(2) IGATE(4) IGATE(8)
Det Vee PRS Det Vec PRS Det Vec PRS
5298 308 14 265 236 27 265 243 52 265 232 60
5344 342 15 329 104 30 329 77 54 329 120 48
$382 399 21 360 1782 39 362 3420 76 362 2047 104
5400 426 21 382 2714 40 382 1763 72 382 2162 112
s444 474 21 421 950 39 424 2082 66 424 1970 104
3526 555 21 446 2113 41 448 3990 72 448 1840 100
5641 467 19 404 167 35 404 294 60 404 265 64
s713 581 19 476 147 32 476 155 48 476 160 80
s820 850 5 812 694 10 812 987 17 814 956 26
$832 870 5 817 926 10 794 959 14 816 965 26
s1196 1242 18 1239 505 36 1239 598 64 1239 633 142
s1238 1355 18 1283 578 35 1283 643 64 1283 589 143
51423 1515 74 1395 4152 147 1402 5636 267 1407 3680 596
$1488 1486 6 1444 585 12 1443 540 17 1448 577 48
$1494 1506 6 1452 611 12 1450 635 17 1452 639 14
55378 4603 179 3568 12,501 332 3559 10,391 676 3556 7664 1449
$35932 | 39,094 1728 || 35,100 250 3344 | 35,100 241 6070 | 35,100 223 13,365
am2910 2391 87 2197 2369 174 2196 3645 352 2198 3083 480
mult1l6 1708 55 1665 1807 110 1664 679 218 1664 2421 280
divl6 2138 50 1812 4084 89 1818 4993 178 1815 5589 446
pcont2 | 11,300 24 6837 2563 48 6837 313 96 6837 5165 256
piir8o 19,920 56 15,071 340 112 | 15,072 600 224 | 15,072 600 300
piir8 29,689 56 18,208 604 112 | 18,206 491 224 | 18,206 493 580

Det: # of faults detected  Vec: test set length

PRS: # of distinct pseudo-register states having justification sequences
Highest numbers of detections are shown in bold

Fault coverages higher than any previous GA-based ATG’s are italicized

partitioned into three pseudoregisters of sizes 2, 2, and 1. TMiken larger size pseudoregisters are used. This result confirms
total number of states represented by the pseudoregistershis ability of the GA to geneticallyengineer a solution when
22 4+ 22 4 21 = 10 states. All ten pseudoregister states hagiven useful starting seeds.

justification sequences generated as shown in the table. When

the pseudoregister size is increased to 4, the total number of VI
states that can be represented now beconfes 2! = 18. ) ) - )
Only a portion of the 18 pseudoregister states had justification”® €St generation framework which utilizes genetically-
sequences generated. As the pseudoregister sizes get largBPoiteered finite-state-machine sequences for targeting hard-

smaller portion of the possible pseudoregister state spac o-gest faults was presented. The test generator is composed

obtainable. For1494, only 14 out of 64 pseudoregister state%g three stages, and several passes through the fault list are

had justification sequences because most of the faults Wg}%de In each stage. Test generation for a targeted fault is

quickly detected without using the state justification phas(éffjlmed out in tvyo phases. The f!rst phasg excites a faut,
. —~ahd propagates its effects to the flip-flops with the assistance

and the 14 states were the hard-to-reach states required _py . e .
of “pseudoregister justification sequences if necessary. The

the remaining faults. In most circuits, larger pseudoregistg&cond phase drives the fault effects from the flip-flops to
sizes tend to give better fault coverage. Larger pseudoregist%%, primary outputs with the aid of distinguishing sequences.
however, may adversely affect the fault coverage since justifaio s types of distinguishing, set, clear, and pseudoregister
cation sequences for some difficult but critical pseudoreglsﬁggtiﬁcaﬁon sequences are computed, both in a preprocessing
states may fail to be generated. 5378, the number of ste and during the test generation process. These sequences
size-2 pseudoregister statesSisx 22 +1 = 357; 332 0ut of 4o seeded in the GA to evolve valid state justification and
357 states had justification sequences derived for them'. Forilt propagation sequences for the target fault. The GA is
pseudoregister size of 6, only 1449 of 1888 (i29.x 2°+2°) aple to combine the finite-state-machine sequences, which
states have justification sequences; fewer than 80% of @ partial solutions to the problem, to engineer a complete
pseudoregister states have justification sequences in this cgsgition. Pruning of these sequences is done dynamically
The lack of information about justification sequences for thguring test generation to improve their effectiveness, quantified
missing 20% of pseudoregister states makes state justificatignthe power indexes. Very high fault coverages obtained in
less successful for some crucial states. Therefore, it may di®ort execution times result from the use of this approach.
better to have justification sequences for some of these criti&gnificant improvements have been observed over previous
states with small pseudoregister sizes than having none at@#i-based and deterministic approaches.

. CONCLUSION
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