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Abstract—New methods for fault-effect propagation and state
justification that use finite-state-machine sequences are proposed
for sequential circuit test generation. Distinguishing sequences
are used to propagate the fault effects from the flip-flops to
the primary outputs by distinguishing the faulty machine state
from the fault-free machine state. Set, clear, and pseudoregis-
ter justification sequences are used for state justification via a
combination of partial state justification solutions. Reengineering
of existing finite-state machine sequences may be needed for
specific target faults. Moreover, conflicts imposed by the use of
multiple sequences may need to be resolved. Genetic-algorithm-
based techniques are used to perform these tasks. Very high fault
coverages have been obtained as a result of this technique.

Index Terms—Automatic test generation, genetic engineering,
pseudoregisters, state justification.

I. INTRODUCTION

T HE MAJORITY of the time spent by automatic test
generators for sequential circuits is used to find test

sequences for hard-to-detect faults. These hard faults are either
hard to excite, hard to propagate, or both. Deterministic test
generators have been proposed in the past [1]–[12], but they
require backtracing through complex gates and flip-flops, and
remodeling of such primitives is often required. Simulation-
based test generators, on the other hand, avoid the complexity
of backtracing by processing in the forward direction only.
However, simulation-based approaches often fall short when
targeting the hard faults.

Previously, homing, synchronizing, and distinguishing se-
quences have been used to aid the test generator in improving
the fault coverage [6], [10]–[12], [26]. In [6], [10], and
[12], symbolic and state-table-based techniques were used
to derive these sequences in the fault-free machine. In [6],
cube intersections of ON/OFF-set representations were used
to derive distinguishing sequences. Binary decision diagrams
(BDD’s) and implicit state enumeration were used in [10] to
derive synchronizing sequences. In the work by Parket al.
[12], functional information was used to pregenerate sequences
which simplified the propagation of fault effects from the flip-
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flops to the primary outputs, and state justification was done
by using BDD’s. Since these sequences are generated using
the fault-free machine only, they may become invalid in a
faulty machine. Homing sequences composed of specifying
and distinguishing portions were used to aid ATPG in [11],
but they had to be recomputed for each target fault.

The presence of a fault creates a faulty machine (circuit
structure) which differs from the fault-free machine. The
goal is to distinguish the faulty machine from the fault-free
machine by activating the target fault and propagating its
effects to the primary outputs. With the test generation process
divided into fault activation and fault propagation phases, the
principal approach taken in our work is to use finite-state-
machine sequences in as many places as possible to reduce
the work of rediscovering such sequences. The finite-state-
machine sequences used in this work encompass distinguishing
sequences, set/clear sequences, and justification sequences, all
of which will be explained in the subsequent sections. No state
diagrams are needed in this work.

Several questions remain. Since there are many finite-state-
machine sequences for any large machine, what finite-state-
machine sequences should be generated and stored? Sequences
derived for a fault-free machine may not be valid for a faulty
machine, or they may be valid for some faulty machines, but
not for other faulty machines; how can invalid sequences be
used to fit the specific needs of the target fault? Moreover,
A finite-state-machine sequence may not always exist; can
partial sequences be used? Finally, we cannot indiscrimi-
nately generate large numbers of sequences because potential
problems of excessive storage and execution may result.

In this work, several classes of finite-state-machine se-
quences are generated statically for the fault-free machine,
and also captured dynamically for the fault-free and faulty
machines during the test generation process. The difficulty
of deriving a sequence is taken into account at run time in
the computation of flip-flop controllability and observability.
These measures are much more accurate than the conven-
tional controllability and observability metrics. They help
to guide the test generator much more effectively, e.g., in
propagating fault effects to flip-flops that are easy to observe.
Modifications to the finite-state-machine sequences may be
needed before they can be applied to fault propagation or
state justification, and several useful sequences may exist for a
particular problem. Genetic algorithms (GA’s) [14] have been
demonstrated to be effective in combining useful portions of
several candidate solutions to a given problem. Therefore, we
have chosen to use genetic algorithms in this work, both to
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Fig. 1. Two-phase test generation strategy.

derive and manipulate finite-state-machine sequences and in
the overall test generation process.

Several approaches to test generation using genetic algo-
rithms have been proposed in the past [15]–[27]. Fitness
functions were used to guide the GA in finding a test vector
or sequence that maximizes given objectives for a single fault
or group of faults. In GATEST [27] and ALT-TEST [25], the
fitness functions were biased toward maximizing the number
of faults detected and the number of fault effects propagated to
flip-flops; increasing the circuit activity was a major objective
in CRIS [15] and GATTO [20]. Maximizing the propagation
of fault effects to flip-flops and increasing circuit activity
have been shown to increase the probability of detecting
faults at the primary outputs. Although the fault detection
probability improves, activating a hard fault and propagating
fault effects from flip-flops to a primary output remain difficult
problems. Furthermore, propagation of fault effects was done
indiscriminately (i.e., the GA-based test generator does not
attempt to drive the fault effects to more observable flip-flops),
resulting in much wasted effort. Increasing circuit activity may
be ineffective in activating a given fault, and propagation of
fault effects from certain flip-flops may not be possible. The
hard-to-activate faults in some circuits may require specific
states and justification sequences in order for them to be
activated, and the previous GA-based test generators have
failed to drive the circuit to these specific states for fault
excitation, resulting in low fault coverages. For instance, GA-
based test generators have obtained low fault coverages for
ISCAS89 circuits [13] 820, 832, 1488, and 1494 due to
frequently deep and specific sequences necessary to excite
the faults, but deterministic test generators have been quite
successful in generating tests for them. The differences in fault
coverages were as high as 30% for such circuits. Even when
a GA was specifically targeted at state justification, the simple
fitness function used was inadequate for these circuits [22],
[27]. Utilizing finite-state-machine information allows us to
overcome the limitations of the previous genetic approaches,
closing the 30% gap in fault coverage for these circuits;
for other circuits, higher fault coverages than ever before
have been obtained. The main difference between our present

work and previously proposed GA-based techniques is that
we utilize problem-specific knowledge during test generation
and explore genetic engineering of sequences that exploit
such knowledge to significantly improve the quality of test
generation, both in terms of fault coverage and execution time.

The remainder of the paper is organized as follows.
Section II gives an overview of this work; Section III briefly
describes the genetic algorithm framework used in the test
generator; Section IV gives details about the derivation
and application of finite-state-machine sequences; Section V
discusses the test generation algorithm, including fault
activation in the single-time-frame mode, selection of target
faults, and fitness evaluation; experimental results are given
in Section VI; and Section VII concludes the paper.

II. OVERVIEW

Our test generation strategy uses several passes through
the fault list, with faults targeted individually in two phases.
The two-phase strategy is illustrated in Fig. 1. The first phase
focuses on activating the target fault, while the second phase
tries to propagate the fault effects (FE’s) from the flip-flops
(FF’s) to the primary outputs. A target fault is selected from
the fault list at the beginning of the fault activation phase,
and an attempt is made to derive a sequence that excites the
fault and propagates the fault effects to a primary output or to
the flip-flops. Once the fault is activated, the faults effects are
propagated from the flip-flops to the primary outputs in the
second phase with the assistance of distinguishing sequences.
The target fault is detected at the primary outputs when
the faulty machine state is distinguished from the fault-free
machine state. The distinguishing sequences corresponding to
the flip-flops reached by the fault effects are used toengineer
a valid sequence which successfully distinguishes the faulty
state from the fault-free state.

During the fault activation phase, single-time-frame activa-
tion is entered if no single activation sequence can be found
directly from the state in which the previous sequence left off.
The state derived by single-time-frame activation is relaxed
and the relaxed state is then justified to complete the fault
activation, as illustrated in Fig. 2.
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Fig. 2. State justification process.

Fig. 3. Justification of partial states.

Flip-flops that are assigned the don’t care value ofare
considered to be unspecified. If stateis partially specified,
then an exhaustive set of states can be obtained by enumerating
don’t care (unassigned) values of. For example, state
is partially specified, and it represents two states and .

Definition 1: State coversstate if the group of states
represented by is a subset of states represented by.

Definition 2: A flip-flop is relaxed if its value is changed
from or to a don’t care value .

In the single-time-frame fault activation, the aim is to
find a test vector, composed of primary input and flip-flop
values, that can activate the target fault in a single time
frame. Once a vector (primary input and flip-flop values)
is successfully derived, the state (flip-flop values) is first
relaxed to one that has as many don’t-care values () as
possible, but is still capable of activating the target fault. State
relaxation, which was first proposed by Niermann and Patel
[7], [8], improves the success rate of the state-justification
process which immediately follows. Next, finite-state-machine
sequences for setting and clearing individual flip-flops and for
justifying the values of groups of flip-flops (pseudoregisters)
are used as seeds in the GA to aid state justification, and

an attempt is made to justify the required state by evolving
the GA population over several generations. In the process,
the candidate sequences contained in the GA population are
simulated, starting from the last state reached after the previous
test sequences have been applied. The objective is to engineer
a sequence that justifies the required state. Note that the
state justified only needs to be covered by the relaxed state.
Consider the situation shown in Fig. 3 in which an attempt
is being made to justify state . Sequence
successfully justifies the first half of the state, but fails to
justify the second half; on the other hand, sequencejustifies
only the second half of the state. These two sequences
and may provide important information in evolving the
complete solution, , which justifies the complete state. The
use of the information provided by and in deriving
sequence is explained later in this paper.

If a sequence is found that justifies the required state, the
sequence is added to the test set, a fault simulator is invoked
to remove any faults detected by the sequence, and the test
generator proceeds to the fault propagation phase. Otherwise,
test generation for the current target fault is aborted, and
processing continues for the next fault in the fault list. In the
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fault propagation phase, the GA is seeded with distinguishing
sequences for the flip-flops to which fault effects have prop-
agated. The distinguishing sequences used as seeds may have
been derived for the fault-free machine or for a different faulty
machine starting from a different state, and thus they may not
be directly applicable to the current situation. Therefore, the
GA population may have to evolve over several generations
before an accurate distinguishing sequence is derived. Flip-
flops that do not have distinguishing sequences are identified
during the test generation process, and propagating fault effects
to these hard-to-observe flip-flops is avoided. If a sequence that
drives the fault effects to the primary outputs is successfully
obtained, the sequence is added to the test set, and a fault
simulator is invoked to remove any additional faults detected
by the sequence. Test generation then continues with the next
fault in the fault list.

A. Why Genetic Engineering?

Finite-state-machine sequences derived for the fault-free
machine may not be valid for the faulty machines. Also,
a sequence that is valid for one faulty machine may be
invalid for a different faulty machine. A sequence derived
previously may be similar to the one needed for the current
target fault; thus, reengineering may provide a sequence
that fits the specific needs of the current situation. Genetic
algorithms are able to genetically reengineer valid sequences to
fit those needs. Furthermore, conflicts encountered during state
justification have to be resolved. During state justification, a
sequence that correctly justifies one portion of the required
state may simultaneously set an incorrect value on other
portion(s), resulting in conflicts. Nevertheless, the justification
sequences for each partial state may be viewed as partial
solutions in finding the justification sequence for the complete
state. Because important information about the assignment
of primary inputs for justifying a specific part of a state is
intrinsically implied by each sequence, this information may
be useful in searching for the complete justification sequence.
Stated differently, each partial solution is a chromosome in
the evolutionary process; the desired solution may be evolved
from the population of chromosomes with appropriate fitness
functions. The GA is capable of combining several partial
solutions, under arbitrary constraints, to form a complete
solution to a problem via the evolutionary processes.

III. GENETIC ALGORITHMS

The GA framework used in our work is similar to the
simple GA described by Goldberg [14]. The GA contains a
population ofstrings, also calledchromosomesor individuals,
in which each individual represents a sequence of test vectors.
A binary coding is used, and therefore, each character in a
string represents the logic value to be applied to a primary
input in a particular time frame. The population size used is
a function of the string length, which depends on both the
number of primary inputs and the test sequence length. Larger
populations are needed to accommodate longer individual test
sequences in order to maintain diversity. The test sequence
length is a function of the structural sequential depth, where

sequential depth is defined as the minimum number of flip-
flops in a path between the primary inputs and the furthest
gate. The population size is set equal to 4 sequence length
when the number of primary inputs is fewer than 16 and
16 sequence length when the number of primary inputs
is greater than or equal to 16. During the first stage of
test generation in the first pass through the fault list, the
sequence length is set equal to the structural sequential depth.
The sequence length is doubled in the second stage of test
generation and doubled again in the third stage since harder
faults may require longer sequences for activation and/or
propagation.

Each individual has an associatedfitness, which measures
the test sequence quality in terms of fault detection, dynamic
controllability and observability measures, and other factors.
The fitness function used in this work depends on the phase
of test generation, and will be explained in a later section.
The population is initialized with random strings, and if any
appropriate finite-state-machine sequences exist for the current
target fault, they are used as seeds as well. A fault simulator
is used to compute the fitness of each individual. Then the
evolutionary processes ofselection, crossover, and mutation
are used to generate an entirely new population from the
existing population. Evolution from one generation to the next
is continued until a sequence is found to activate the target
fault or propagate its effects to the primary outputs or until
a maximum number of generations is reached. To generate
a new population from the existing one, two individuals
are selected, with selection biased toward more highly fit
individuals. The two individuals are crossed to create two
entirely new individuals, and each character in a new string
is mutated with some small mutation probability. A mutation
probability of 0.01 is used in this work, and since a binary
coding is used, mutation is done by simply flipping the
bit. The two new individuals are then placed in the new
population, and this process continues until the new generation
is entirely filled. At this point, the previous generation can be
discarded. In our work, we use tournament selection without
replacement and uniform crossover. Intournament selection
without replacement, two individuals are randomly chosen
and removed from the population, and the best is selected;
the two individuals are not replaced into the original (parent)
population until all other individuals have also been removed.
Thus, it takes two passes through the parent population to
completely fill the new population. Inuniform crossover, bits
from the two parents are swapped with probability 1/2 at each
string position in generating the two offspring. A crossover
probability of 1 is used, i.e., the two parents are always
crossed in generating the two offspring. Because selection is
biased toward more highly fit individuals, the average fitness is
expected to increase from one generation to the next. However,
the best individual may appear in any generation.

IV. FINITE-STATE-MACHINE SEQUENCES

Distinguishing, set, clear, and pseudoregister justification
sequences are the finite-state-machine sequences involved in
this work. They are used as seeds for the GA during the cor-
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Fig. 4. Types of distinguishing sequences.

responding fault-propagation and state-justification phases. If
the seeds are valid for a given situation, no further processing
is required; otherwise, we attempt to genetically engineer valid
sequences from the seeds. Each class of finite-state-machine
sequences is described in this section.

A. Distinguishing Sequences

Distinguishing sequences are used to propagate fault effects
from the flip-flops to the primary outputs. We define three
different types of distinguishing sequences, as illustrated in
Fig. 4.

Definition 3: A distinguishing sequence of type Afor flip-
flop is a sequence that produces two distinct output responses
when applied to the fault-free machine for two initial states
that differ in the th position and are independent of all other
flip-flop values.

Definition 4: A distinguishing sequence of type Bfor flip-
flop is a sequence that produces two distinct output responses
when applied to the fault-free machine with flip-flop (or
) and applied to the faulty machine with flip-flop (or
), independent of the values of all other flip-flops.
Definition 5: A distinguishing sequence of type Cfor flip-

flop is a sequence that produces two distinct output responses
when applied to the fault-free machine with flip-flop (or
) and applied to the faulty machine with flip-flop (or
) while one or more of the other flip-flops have specific logic

values.
Type A distinguishing sequences distinguish two states

of the samemachine, while types B and C distinguishing
sequences distinguish states on twodifferent machines. A
distinguishing sequence of type C is similar to a type B
sequence, except that a partial state (i.e., a subset of flip-flops)
is assigned to a specific value. The valuein the state in
Fig. 4 denotes an unknown, or more precisely, adon’t care
value, and in a state represents a string of specific values
(e.g., or ). Note that, because the distinguishing sequences
of type C depend on a partial stateof the machine, they may
not necessarily be applicable directly from any starting state.

A distinguishing sequence associated with a flip-flop can
propagate a fault effect from the given flip-flop to the primary

outputs. The most general case of generating a type A distin-
guishing sequence is as follows. A fault effect
is placed at the output of a flip-flop, while all other flip-
flops in the circuit are set to unknown values. Any sequence
that makes the observable at the primary outputs is a
distinguishing sequence of type A for the given flip-flop. This
type of sequence is able to distinguish pairs of states
in the fault-free machine, where is the total number of
flip-flops in the circuit. In most circuits, however, the number
of type A distinguishing sequences is small. In addition, this
type of sequence may not successfully distinguish the states
in the fault-free machine from those in the faulty machine,
which is required when generating a test sequence for a
target fault. Fortunately, fault effects are often propagated to
many flip-flops, and flip-flop values do not typically remain
unknown during the course of test generation. This gives rise
to distinguishing sequences of types B and C.

A distinguishing sequence of type B or C for a flip-flop
is specific to a target faulty machine (machine resulting from
the presence of a target fault). Given a fault-free machine
and a corresponding faulty machine, a type B sequence
would be able to distinguish pairs of states between
machines and . On the other hand, a type C sequence
would distinguish only pairs of states, where
denotes the number of flip-flops with specified values. It should
be noted that distinguishing sequences of types A and B are
more powerful than those of type C since more pairs of states
differing in a given flip-flop can be distinguished by the
sequences of types A and B for flip-flop.

While distinguishing sequences of type A are capable of
distinguishing two different fault-free states and ,
they may not necessarily be able to distinguish the state

in fault-free machine from the state in faulty
machine . Nevertheless, a type A sequence may be very
similar to a sequence that is able to distinguish the two states
in machines and . Therefore, it is helpful to seed the
GA with distinguishing sequences of type A in searching
for a successful distinguishing sequence. Carrying this idea
further, when a distinguishing sequence of type B or C is
found for a certain fault , that sequence may not be directly
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applicable under a different fault . A similar argument
applies in this case: the previously derived distinguishing
sequence may be used as a seed for the GA to help find a
valid sequence. The sequences generated in [12] are similar
to the type A distinguishing sequences, except that they were
generated using BDD’s; no pruning of sequences was done,
and dynamically generated sequences targeting specific faults
were not used. When the sequences fail to distinguish the states
for specific faulty machines, no procedure was given to modify
the sequences. In contrast, we use a variety of distinguishing
sequences and modify them to get valid sequences for each
fault.

A distinguishing sequence of type C requires a specific
partial state in order to successfully propagate afrom a
given flip-flop to the primary outputs. Under this restriction,
many flip-flops often have distinguishing sequences of type C
when the more powerful sequences of types A and B do not
exist. In many cases, a type C distinguishing sequence works
as well as a type A or B sequence because the state reached
at the end of fault activation is often contained within the
required set of states for the distinguishing sequence.

Storing the type C distinguishing sequences may pose a
problem, however. Including the specific values of the required
partial state for the sequences may adversely affect both
the execution time and memory storage. Furthermore, when
a distinguishing sequence of type C is derived dynamically
during test generation, it is difficult to identify the flip-flops
which require specific values. Thus, instead of storing the
values for various subsets of flip-flops, a distinguishing power
is associated with each distinguishing sequence to indicate how
well the sequence distinguishes between states. As a conse-
quence, the distinguishing power also indirectly indicates how
well a fault effect will propagate from the corresponding flip-
flop. Although the state-containment information is missing for
these distinguishing sequences, they are still useful as seeds
for the GA to evolve an effective distinguishing sequence.
The distinguishing power of every corresponding sequence is
updated for each successful and unsuccessful GA application.

All three types of distinguishing sequence can be generated
by the GA. Before test generation begins, the GA is set in a
preprocessing stage to compute any distinguishing sequences
of type A. The sequence length of each individual in the GA
population is set equal to the length used in the third stage
of test generation, i.e., four times the sequential depth of the
circuit. The actual length of a type A sequence depends on
the time frame in which the states are distinguished. Type
B sequences could be generated in a similar manner, given
information about a particular faulty circuit, but it is likely
to add to execution time without adding appreciable value.
During the test generation process, derivation and pruning of
distinguishing sequences of type C are done concurrently and
adaptively. The GA is initialized with random sequences, and
any distinguishing sequences of the flip-flops to which fault-
effects have propagated are used as seeds in place of some of
the random sequences in the fault propagation phase. If the
seeds are longer than the length of a GA individual, the extra
vectors at the end of the seed are truncated. If the seeds are
shorter, they are padded at the end with extra random vectors.

Sequences of type C may themselves be shorter than the length
of a GA individual, depending on the time frame in which the
states are distinguished.

For flip-flops that do not have an associated distinguishing
sequence of any type, an observability value is used to indicate
how observable the flip-flop is in the GA framework. Initially,
all flip-flops in the circuit are set to a certain observability
value. As time progresses, these observabilities for the flip-
flops will decrease if no distinguishing sequence can be
obtained for them. A low observability value indicates that
it is difficult to generate a distinguishing sequence for that
flip-flop. This measure of observability is much more accurate
than conventional observability values, and it enables the test
generator to avoid the propagation of fault effects to hard-to-
observe flip-flops.

B. Set and Clear Sequences

Flip-flop set and clear sequences are used in engineering a
sequence to justify a desired state. We define flip-flop set and
clear sequences as follows:

Definition 6: A flip-flop set sequenceis a sequence that sets
the associated flip-flop to a logic value of one.

Definition 7: A flip-flop clear sequenceis a sequence that
clears the associated flip-flop to a logic value of zero.

For each flip-flop that requires a specific value, the cor-
responding set or clear sequence is used as a seed in the
GA. A set of flip-flop set and clear sequences is pregener-
ated prior to test generation. Similar to distinguishing power,
an associated setting (clearing)power is maintained which
indicates the sequence’s ability to set (clear) the given flip-
flop starting from an unknown starting state. When a flip-flop
set (clear) sequence is obtained, it is given a minimal power.
As test generation progresses, the associated powers of these
sequences are dynamically updated, and sequences having low
powers are pruned. New flip-flop set and clear sequences may
be dynamically generated and added to the set during the
course of test generation.

A flip-flop set (clear) sequence associated with a flip-flop
is intended to set (clear) the flip-flop starting from any given
state. Any sequence that can set (clear) a given flip-flop
starting from an unknown state is a candidate set (clear)
sequence for theth flip-flop. Such sequences are calledtype A
sequences. Type A sequences are generated in a preprocessing
step prior to test generation with the sequence length set to four
times the sequential depth of the circuit, but the actual length
of a type A sequence depends on the time frame in which the
flip-flop values are set or cleared. Although a large percentage
of flip-flops have type A set/clear sequences, a small number
of flip-flops remain hard to control. These flip-flops without
type A set/clear sequences may have type B sequences, which
are sequences dynamically generated for the fault-free machine
during test generation. Type B sequences may require specific
starting partial states. As the state becomes defined during the
course of test generation, it may be easier to generate type B
set/clear sequences. The length of a type B sequence depends
on the time frame in which the flip-flop values are set or
cleared. It should be noted that type B set/clear sequences are
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(a) (b)

Fig. 5. Genetic engineering of state justification sequence.

not guaranteed to be successful in setting/clearing a given flip-
flop from any starting state. Thus, type A set/clear sequences
are more powerful than type B sequences. Both sequences
of types A and B may become invalid in the presence of
a fault. Furthermore, conflicting values may be encountered
when applying the set and clear sequences for different flip-
flops simultaneously. Conflicts can sometimes be resolved by
the GA. However, more powerful sequences may be needed
to reduce the frequency of conflicts.

C. Pseudoregister Justification Sequences

Sequences that are able to justify multiple flip-flop values
simultaneously are more powerful than single flip-flop set
and clear sequences. We partition the flip-flops into several
groups, calledpseudoregisters, and the justification sequences
for pseudo-register states are defined as follows.

Definition 8: A pseudoregister justification sequenceis a
sequence that is able to justify the required flip-flop values for
a particular pseudoregister.

Thus, set and clear sequences are a special case of pseu-
doregister justification sequences having a size of 1. For each
pseudoregister that requires a specific value, any corresponding
pseudoregister justification sequences are used as seeds in the
GA. The goal is to genetically combine the pseudoregister
justification sequences to engineer the desired solution for the
complete state, as shown in Fig. 5.

A pseudoregister justification sequence is a sequence
capable of setting pseudoregisterto a specific state. Justi-
fication sequences of types A and B are generated as for the
set and clear sequences. A justification sequence of type A
is a sequence that is able to justify a desired pseudoregister
state starting from an unknown state. Type A sequences are
generated statically in a preprocessing step; the GA sequence
length used is four times the sequential depth of the circuit,
but the actual length of a type A sequence depends on the
time frame in which the pseudoregister state is justified.
Type B sequences are generated dynamically for the fault-
free machine during test generation, and may require specific
partial starting states. The length of a type B sequence depends
on the time frame in which the pseudoregister state is justified.
Justification powers are maintained for each sequence and
dynamically updated during the course of test generation.
Depending on the sizes of the pseudoregisters, the number
of type A pseudoregister justification sequences varies. Larger
pseudoregisters are able to hold more states, but fewer of these
states are likely to have type A sequences.

In terms of storage requirements, symbolic techniques for
state justification introduced in the past are often memory
inefficient for large circuits; moreover, storing justification
information for the entire state space in the circuit would
require a huge storage space. For example, in a circuit with
flip-flops, as many as states may have to be stored, along
with justification sequences for each state. On the other hand,
if the flip-flops are partitioned into pseudoregisters, which
are groups of flip-flops representing portions of the entire
state, only pseudoregister states and sequences have
to be stored. This is of linear order when is small.
In this work, typical values of are less than six.

V. TEST GENERATION ALGORITHM

The test generator is comprised of three stages; each stage
involves several passes through the fault list, and a stage is
finished when little or no improvement in fault coverage is
achieved. Faults are targeted individually within each stage,
and GA’s are used to activate a fault and propagate the fault
effects to the primary outputs. Different test sequence lengths
for individuals are used in the GA population for the different
stages. Since the time required for the fitness evaluation is
directly proportional to the test sequence length, the shorter
sequences are tried first, and faults are removed from the fault
list once they are detected.

Test generation for a target fault is divided intofault acti-
vation and fault propagationphases. Fault activation excites
the fault and propagates its effects to a primary output or
at least one flip-flop. Fault propagation propagates the fault
effects from one or more flip-flops to a primary output,
possibly through several time frames, with the assistance of
distinguishing sequences. Single-time-frame mode and state
justification are used for fault activation when no sequence
capable of exciting the target fault and propagating its effects
to one or more flip-flops is generated. Fig. 6 displays the
pseudocode for the two-phase test generation algorithm within
each stage of the test generator.

Before test generation begins, the GA is used in a pre-
processing stage to compute any type A finite-state-machine
sequences. During the test generation process, derivation and
pruning of sequences are done concurrently and adaptively.
The GA is initialized with random sequences, and any relevant
finite-state-machine sequences are used as seeds in place of
some of the random sequences in the fault activation and fault
propagation phases. The sequences and their corresponding
power indexes are pruned after each successful and unsuc-
cessful application.



246 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

Fig. 6. Test generation algorithm.

Because the number of finite-state-machine sequences
grows over time, the lists of sequences are pruned adaptively
to increase the power and accuracy of these sequences in
justifying and distinguishing the states. To improve state
justification and fault detection, flip-flops which are hard to
control or hard to observe are identified dynamically during the
process; as a result, justification of difficult states in the first
phase and propagation of fault effects to the hard-to-observe
flip-flops in the first and second phases may be avoided. All
faults are targeted until little or no more improvement is made.

A. The Single-Time-Frame Mode

When activation of the target fault is difficult and the GA
fails to generate an activation sequence in the first phase, a
second attempt is made to activate the fault in a single time
frame. The aim here is to engineer a vector, composed of
primary input and flip-flop values, capable of exciting the
target fault and propagating its effects to at least one flip-flop
in a single time frame. The target fault is activated when the
fault is excited, and its effects propagate to one or more flip-
flops or primary outputs in the single time frame. Initially, the
GA is seeded with random vectors, and the evolution process
is continued until a vector is found or a maximum of eight
generations is reached. The fitness function guides the search
by favoring individuals that activate the target fault. Because
an unjustifiable state is undesirable, the fitness function uses
the dynamic controllability values of the flip-flops to guide the
search toward more easily justifiable states.

With these measures as guides to search for a solution, there
is still no guarantee that the resulting state is indeed justifiable.
Therefore, a further relaxation step is performed. Letdenote
a state to be justified and the th flip-flop in state . The
state is obtained by inverting the value of. If the target

fault is still activated by , then the th flip-flop can be relaxed
to the unknown value . This implies that activation of the
target fault does not depend on the assignment of. The order
in which the flip-flops are relaxed is determined in a two-
level greedy fashion: first, the order of the pseudoregisters is
determined from the least controllable to the most controllable
pseudoregister state; then, the order of the flip-flops within the
pseudoregister is determined from the least controllable to the
most controllable flip-flop.

When state relaxation is finished, the relaxed state has
to be justified. The GA is seeded with the set, clear, and
pseudoregister justification sequences corresponding to the
state to be justified. Pseudoregister justification sequences are
selected such that the corresponding pseudoregister states they
justify arecoveredby the desired relaxed state. The remaining
individuals, if any, are seeded with random sequences. The GA
begins its search by genetically reengineering and combining
the partial solutions to form the complete solution that justifies
the state with fitness functions that guide the GA to a sequence
that successfully justifies the relaxed state.

B. State Justification Phase

The seeded sequences aim to justify the relaxed state. Up to
five sequences are seeded for each pseudoregister state. The
set, clear, and pseudoregister justification sequences may vary
in length. Type B sequences may be shorter than the length of
an individual in the GA population, and type A sequences may
be shorter or longer. If a sequence is too long, the extra vectors
from the beginning of the sequence are removed. The vectors
at the end of the sequence may still be effective in achieving
the desired state. The situation is different for sequences that
are too short. Unlike distinguishing sequences, where the time
frame in which the fault effects propagate to the primary
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(a) (b)

Fig. 7. Two methods of seeding the justification sequences.

outputs is not an important issue, the partial justification
sequences have to arrive at their target states simultaneously.
This imposes several constraints on the problem. Two possible
ways of aligning the sequences corresponding to the target
pseudoregister states are illustrated in Fig. 7. The first method
left aligns all state justification seeds beginning with the state
in which the previous sequence left off, as shown in Fig. 7(a).
The second method right aligns the seeds ending at the time
frame corresponding to the desired state, as shown in Fig. 7(b).
Any missing vectors are padded with random vectors. The
length of the state justification sequence derived may be
shorter than the length of an individual in the GA population.
Simulation is performed for each candidate sequence, and the
state reached after each vector is compared against the desired
state. Once the desired state is reached, any extra vectors are
truncated. While the second method may appear to have a
higher chance of success in justifying the desired state because
all seeds end at the same time frame, the dominant factor
in deriving the desired justification sequence is the ability
to justify the hard-to-control portions of the state. The right-
alignment scheme does not leave room for correction if the
desired state is not justified at the end of the sequence length.
On the other hand, left aligning the vectors allows the GA to
truncate the sequence to the length of the seed that corresponds
to the hardest to control pseudoregister. Combining partial
solutions of different lengths to form a complete solution is
a very difficult problem; neither a left nor a right alignment
scheme guarantees convergence to a sequence that justifies
the desired state. However, experiments conducted to compare
the two alignment approaches confirmed that left alignment is
more likely to derive the justifying sequence in most cases.
Therefore, the left-alignment method is used.

The GA evolves the seeded sequences over several genera-
tions to find a sequence that justifies the desired relaxed state.
The fitness function is biased toward favoring justification
of harder to control pseudoregister states. As a result, the
hard-to-control portions of the state will be justified first.

C. Secondary Effect of the Power Indicators

The different power indicators associated with the finite-
state-machine sequences are not only able to assist in justifying

or distinguishing states, but are also useful as controllabil-
ity and observability measures to guide the test generation
process.

Let denote the controllability of pseudoregisterfor
state . A higher value indicates that pseudoregister
is more easily controlled to state. Initially, is set to
15 for all pseudoregister statesof each pseudoregister. A
pseudoregister with a justification sequence for stateis given
a controllability value , where varies
with different pseudoregister sizes, with higher values
given to larger pseudoregisters. During test generation,
is decremented by every time justification of state for
pseudoregister fails and is incremented by otherwise. The
power indicators of all corresponding sequences are updated
for each successful and unsuccessful GA application.

This measure of controllability helps in relaxation of the
state during the single-time-frame mode by avoiding hard-to-
justify pseudoregister states. For example, a state that is easily
justifiable is favored over a state that is hard to justify. The
dynamic controllability also helps during state justification by
guiding the GA toward discovering and/or traversing through
hard-to-justify states.

Analogous reasoning goes for the observability of the flip-
flops. Let be the observability value for flip-flop. is
initially set to for flip-flops having distin-
guishing sequences and 15 for the remaining flip-flops. During
test generation, is decremented by 1 if no distinguishing
sequence can be obtained for flip-flopand incremented by 1 if
the application of its distinguishing sequence is successful. A
low value indicates that it is difficult to propagate a fault effect
to a primary output from that flip-flop. This measure enables
propagation of fault effects to hard-to-observe flip-flops to be
avoided.

D. Fitness Functions

Since the fault activation and fault propagation phases target
different goals, their corresponding fitness functions differ. The
parameters that affect the fitness of an individual in the GA
are as follows.

Fault detection by the individual.
Sum of dynamic controllabilities for pseudoregisters.
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Fig. 8. Output and flip-flop partial cones.

Matches of pseudoregister values during state justifica-
tion.
Sum of distinguishing powers for the distinguishing
sequences of flip-flops with fault effects.
Weighted faulty circuit activity induced.
Number of new states visited by the individual.

Parameter is self-explanatory, in particular, during the
fault propagation phase. It is included in the fault activation
phase to cover faults that propagate directly to the primary
outputs in the time frame in which they are excited.
indicates the quality of the state to be justified. Maximizing

makes the state more easily justifiable in the single-time-
frame mode, and also avoids unjustifiable states. On the other
hand, minimizing expands the search space by visiting
hard-to-justify states. A sequence that justifies a hard-to-justify
pseudoregister state is favored during test generation since
the GA is more likely to bring the circuit to previously
unexplored state spaces as a consequence.guides the GA
to match the required pseudoregister values in the state to be
justified, from the least controllable to the most controllable
pseudoregister state. If only set and clear sequences are used,
the pseudoregister states are replaced by flip-flop values in

. measures the quality of the set of flip-flops reached
by the fault effects. Maximizing increases the probability
that the fault effects reach flip-flops having more powerful
distinguishing sequences, and thus indirectly improves the
chances for detection. measures the number of events
generated in the faulty circuit, with events on more observable

TABLE I
CHARACTERISTICS OFSYNTHESIZED CIRCUITS

gates weighted more heavily. Partial cones are computed and
set up for the primary outputs and flip-flops. Fig. 8 illustrates
the setup of partial cones; each partial cone has a depth
of one-fifth the circuit’s depth. Events are weighted more
heavily if they are inside partial cones of the PO’s or flip-
flops with more powerful distinguishing sequences; events
inside the partial cones of the hard-to-observe flip-flops are
weighted more lightly. Events inside the partial cones of flip-
flops having moderate observability values and events outside
the partial cones are given a weight of 1. The partial cones
are recomputed at the beginning of each of the three GA
stages in order to include cones of flip-flops for which new
distinguishing sequences have been obtained or observability
values have decreased. is used to expand the search space.
It was suggested in [29] and [30] that visiting as many
different states as possible helps to detect more faults. The
fitness functions thus favor visiting more states when the fault
detection count drops very low. Hence, is considered in the
final stage only. Different weights are given to each parameter
in the fitness computation during the two phases (see the
bottom of the page).

In the fault activation phase, the aim is to excite the fault
and propagate the fault effects to as many good flip-flops
as possible with short sequences and minimal time, where
good flip-flops are those with more powerful distinguishing
sequences; thus, the fitness function places a heavier weight
on the quality of flip-flops reached by the fault effects. Any
positive value on parameter implies that the target fault is
excited and the fault effects propagated to at least one flip-flop.
If no sequence is obtained to activate the current target fault,
single-time-frame fault activation and state justification are
used in a second attempt to activate the fault. In this case, the
fitness function favors states that can be more easily justified in
the single-time-frame activation, and the fitness function favors
hard-to-reach states during state justification because hard-to-

Fault activation phase:
Multiple time frame: Single time frame:

fitness fitness
State justification:

fitness

Constant
Fault propagation phase:

fitness evaluated only in the final GA stage.
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TABLE II
GATE(0) TEST GENERATION RESULTS

reach states may be necessary in order to reach a desired state
that was previously unvisited. In the fault propagation phase,
the goal is to find a sequence that will propagate the fault
effects to a primary output, so the emphasis is placed on fault
detection.

E. Adaptive Pruning of Sequences

The distinguishing or justification power associated with a
sequence should indicate how well the sequence can propagate
a fault effect or justify a state under various requirements for
different faults. When a sequence is obtained, a minimal
power is given to the sequence. is applied again when it
is needed. For instance, when the same partial state needs
to be justified at a later time, the corresponding pseudo-
register justification sequence will be seeded. In the case of
distinguishing sequences, when another fault effect reaches the
same flip-flop, the associated distinguishing sequence is used
again to guide the GA. If a sequence is found and is the same
as , the power for is incremented. If the sequence found
differs from , an additional sequence is added to the
corresponding set of sequences, and the powers of bothand

are incremented. On the other hand, if no sequence is found,
the power of is decremented. If the power drops below the
minimal value, is removed from future consideration.

When the GA cannot be seeded with any useful sequences
from a set of flip-flops, it is initialized with random sequences.
If a sequence is derived, it becomes a candidate sequence for
the respective pseudoregisters or flip-flops in the set. It should
be noted that this sequence may be more powerful for some
partial states, while less powerful for others in the set, but as
the sequences are further pruned, the unfit ones are eventually
weeded out.

F. Selection of the Target Fault

Since only forward propagation is involved, the target fault
is selected intelligently. A fault is selected when its fault
effects have propagated to a flip-flop having a distinguishing
sequence of maximal distinguishing power. By selecting this
fault, the activation phase can be omitted because the effects
of the targeted fault have already reached at least one flip-flop.
Thus, the fault propagation phase can be entered immediately.
The target fault selected in this manner is likely to have a
higher probability of detection.

If no fault has reached any flip-flop having a distinguishing
sequence, selection of the target fault is biased toward the fault
that has reached the greatest number of flip-flops. However,
the activation phase is not omitted in this case.

G. Other Implementation Details

Because one fault is targeted at a time and the majority of
time spent by the GA is in the fitness evaluation, parallelism
among the individuals can be exploited. Therefore, parallel-
pattern simulation [28] is used to speed up the process. During
test generation, 32 sequences are simulated simultaneously,
with values bit packed into 32-bit words during simulation.
Fault-free simulation is first performed, followed by insertion
of the fault and faulty circuit evaluation, in which events start
exclusively from the faulty gate.

Targeting untestable faults is a waste of time because
untestable faults cannot be identified using our approach. Thus,
the HITEC deterministic test generator [7] is used after the
first GA stage to identify and remove many of the untestable
faults. A small time limit of 0.4 s/fault is used in an initial
HITEC pass through the fault list to minimize the execution



250 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

TABLE III
COMPARISON OF THREE EXPERIMENTS

time. If a large number of untestable faults is identified or if
only a small number of faults remains in the fault list, a second
HITEC pass with a time limit of 2 s/fault is used. Any test
sequences generated by HITEC are discarded.

VI. EXPERIMENTAL RESULTS

The test generator was implemented in C++; both ISCAS89
sequential benchmark circuits [13] and several synthesized
circuits were used to evaluate its performance. All circuits
were evaluated on an HP 9000 J200 with 256-Mbyte RAM.
The characteristics of the synthesized circuits are as follows:
am2910 [31] is a 12-bit microprogram sequencer, mult16 is
a 16-bit 2’s-complement shift-and-add multiplier, div16 is a
16 bit divider using repeated subtractions, pcont2 is an 8-bit
controller for DSP applications, and piir8o and piir8 are both
8-bit digital DSP filters. Table I displays the characteristics of
the synthesized circuits. Structural sequential depth, number of
flip-flops, number of PI’s, number of PO’s, and the total num-
ber of collapsed faults for each circuit are given in the table.

Three experiments were conducted. The first experiment
involves the use of only distinguishing sequences during
test generation. Neither single-time-frame fault activation nor
state justification is applied in this case. Essentially, the
distinguishing sequences are applied whenever the target fault
could be activated directly from the state reached after the
previous test sequences are applied. In the second experi-
ment, pseudoregister justification sequences of size 1 (i.e.,
set and clear sequences for individual flip-flops) are used as
seeds during the state justification phase, and distinguishing
sequences are used during fault propagation. Finally, the

results obtained by using justification sequences of larger
pseudoregister sizes are reported in the third experiment. The
test generators associated with these three schemes are labeled
IGATE , where is the pseudoregister size used in the
test generator. IGATE(0) is the test generator that uses only
distinguishing sequences (no pseudoregister sequences for
state justification), IGATE(1) utilizes justification sequences of
size-1 pseudoregisters, etc. Results for each test generator are
given in this section. In addition, the effect of pseudoregister
sizes on state justification is discussed as well.

A. Results of Using Distinguishing Sequences Only

The first experiment involves the use of distinguishing
sequences only in the test generator IGATE(0). The fault
coverages of IGATE(0) are compared to fault coverages for
various other test generators in Table II. For each circuit,
the total number of collapsed faults is given, followed by
the number of faults detected and the test set length for
each test generator. The number of distinguishing sequences
generated by our approach is also reported for each circuit.
The first test generator is HITEC [7], a deterministic test
generator, followed by the GA-based test generators GATEST
[27], CRIS [15], GATTO [20], and finally our test generator,
IGATE(0). The GATEST results are an average of ten runs,
each beginning with a different random seed.

Fault coverage is defined as the percentage of faults de-
tected. The best fault coverages are highlighted in bold.
From the table, the fault coverages achieved by IGATE(0)
are significantly higher than those obtained by the other
GA-based test generators for most of the circuits. For the hard-
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TABLE IV
RESULTS AT VARIOUS CHECKPOINTS FORIGATE(0)

to-test ISCAS89 circuits, such as400, 444, 526, 1423,
5378, and 35932, where long execution times are required

by HITEC, the fault coverages achieved by IGATE(0) are
significantly higher than those for the other GA-based test
generators, and often higher than the HITEC fault coverages
as well. IGATE(0) outperforms both HITEC and GATEST
for all the synthesized circuits. However, IGATE(0) does not
perform as well as HITEC for820, 832, 1488, and 1494.
These circuits contain faults that require specific and often
long sequences for fault activation. None of the previous GA-
based test generators could match the results of HITEC for
these circuits since only HITEC was able to generate the exact
sequences required to excite the faults. The test sets obtained
by IGATE(0) are shorter than those obtained by HITEC, even
when higher fault coverages are achieved by IGATE(0). The
test sets are shorter than those obtained by CRIS and GATTO
for most of the circuits. The test set lengths are comparable
to those for GATEST, although sometimes longer due to the
two-phase strategy of activating and propagating faults. Very
high fault coverages are obtained very quickly for most of the
circuits, as will be shown in the later part of this discussion.

B. Adding Single-Time-Frame Activation
and State Justification

In the second and third experiments, single-time-frame
mode with state justification is used to target hard-to-activate

faults in the circuits. Pseudoregister justification sequences of
various sizes are used to aid state justification in IGATE,
where . A comparison of fault coverages for IGATE(0),
IGATE(1), and IGATE(6) is given in Table III. The number
of faults detected and the test set lengths are given for each
test generator. The number of distinguishing sequences (DI),
set/clear sequences (SC), and the number of pseudoregis-
ter states for which justification sequences were generated
(PRS) are given for IGATE(0), IGATE(1), and IGATE(6),
respectively. Results for IGATE(6) are obtained using pseu-
doregisters of size 6. The best fault coverage numbers are
shown in bold. The numbers of distinguishing sequences
generated by IGATE(1) and IGATE(6) are similar to the
number obtained by IGATE(0).

For circuits that IGATE(0) and the previous GA-based
test generators did poorly on, namely,820, 832, 1488,
and 1494, which require specific justification sequences,
IGATE(1) and IGATE(6) were able to detect many more faults
due to single-time-frame fault activation and state justification.
The fault coverages are as high as those obtained by HITEC
for IGATE(6). For 820, IGATE(1) detected 702 faults and
IGATE(6) detected 814 faults, while only 517, 451, and
621 faults were detected by GATEST[27], CRIS[15], and
IGATE(0), respectively; more than 30% improvement in fault
coverage was obtained. For the larger and more complex cir-
cuits, 1423, 5378, and 35932, outstanding fault coverages
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TABLE V
RESULTS AT VARIOUS CHECKPOINTS FORIGATE(1) AND IGATE(6)

were obtained by IGATE(6) when compared to IGATE(0),
which already achieved very high fault coverages. Similar
trends are seen in the results for the synthesized circuits. In
terms of test set sizes, the test sets obtained by IGATE(1)
and IGATE(6) are nearly the same size as those obtained by
IGATE(0), which are generally shorter than those obtained by
HITEC when comparable fault coverages are obtained. The
test sets are also shorter than those obtained by CRIS for
most of the circuits. IGATE(0), IGATE(1), and IGATE(6) also
achieve very high fault coverages very quickly, as will be
discussed next.

C. Execution Times

Very high fault coverages were obtained using a small
number of vectors in a short time by all three test generators.
This phenomenon is illustrated in Tables IV and V.

The best results of the previous GA-based test generators
shown in Table II are listed in Table IV. The test generator,
number of faults detected, and test set size are shown in
Table IV, followed by the results of IGATE(0). Table V shows
the results for IGATE(1) and IGATE(6). The run times at
three checkpoints are displayed for IGATE(0), IGATE(1), and
IGATE(6) in these two tables. These checkpoints were placed
at the end of each GA stage. Recall that sequence lengths
for the individuals in the population are doubled from one

stage to the next, with longer sequences used to target the
harder faults. The column shows the difference in fault
coverages between our test generators and the best achieved
by any of the previous GA-based test generators. The fault
coverages at the end of the first GA stage are already higher
than the final fault coverages of the other test generators for
many circuits. Many of these execution times are much shorter
than those required by HITEC [7]. The user may wish to stop
the test generation process if the fault coverage has reached a
satisfactory level at the end of the first or second stage.

D. Effect of Pseudoregister Sizes

Table VI compares the effects of different pseudoregister
sizes. The numbers of distinct pseudoregister states (PRS) for
which justification sequences could be generated by IGATE
are reported, and results for three pseudoregister sizes are
shown: 2, 4, and 6. The highest numbers of faults detected are
shown in bold, and the italicized numbers indicate fault de-
tections which are higher than any results previously obtained
by other GA-based test generators.

One interesting statistic is the number of distinct pseudo-
register states for which justification sequences could be
derived. This number is indicated in the “PRS” column of
the table. Take, for instance, circuit820 which has only five
flip-flops. When the pseudoregister size is 2, the flip-flops are
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TABLE VI
EFFECTS OFPSEUDOREGISTERSIZES

partitioned into three pseudoregisters of sizes 2, 2, and 1. The
total number of states represented by the pseudoregisters is

states. All ten pseudoregister states had
justification sequences generated as shown in the table. When
the pseudoregister size is increased to 4, the total number of
states that can be represented now becomes .
Only a portion of the 18 pseudoregister states had justification
sequences generated. As the pseudoregister sizes get larger, a
smaller portion of the possible pseudoregister state space is
obtainable. For 1494, only 14 out of 64 pseudoregister states
had justification sequences because most of the faults were
quickly detected without using the state justification phase,
and the 14 states were the hard-to-reach states required by
the remaining faults. In most circuits, larger pseudoregister
sizes tend to give better fault coverage. Larger pseudoregisters,
however, may adversely affect the fault coverage since justifi-
cation sequences for some difficult but critical pseudoregister
states may fail to be generated. For5378, the number of
size-2 pseudoregister states is out of

states had justification sequences derived for them. For a
pseudoregister size of 6, only 1449 of 1888 (i.e., )
states have justification sequences; fewer than 80% of the
pseudoregister states have justification sequences in this case.
The lack of information about justification sequences for the
missing 20% of pseudoregister states makes state justification
less successful for some crucial states. Therefore, it may be
better to have justification sequences for some of these critical
states with small pseudoregister sizes than having none at all

when larger size pseudoregisters are used. This result confirms
the ability of the GA to geneticallyengineer a solution when
given useful starting seeds.

VII. CONCLUSION

A test generation framework which utilizes genetically-
engineered finite-state-machine sequences for targeting hard-
to-test faults was presented. The test generator is composed
of three stages, and several passes through the fault list are
made in each stage. Test generation for a targeted fault is
carried out in two phases. The first phase excites a fault,
and propagates its effects to the flip-flops with the assistance
of pseudoregister justification sequences if necessary. The
second phase drives the fault effects from the flip-flops to
the primary outputs with the aid of distinguishing sequences.
Various types of distinguishing, set, clear, and pseudoregister
justification sequences are computed, both in a preprocessing
step and during the test generation process. These sequences
are seeded in the GA to evolve valid state justification and
fault propagation sequences for the target fault. The GA is
able to combine the finite-state-machine sequences, which
are partial solutions to the problem, to engineer a complete
solution. Pruning of these sequences is done dynamically
during test generation to improve their effectiveness, quantified
by the power indexes. Very high fault coverages obtained in
short execution times result from the use of this approach.
Significant improvements have been observed over previous
GA-based and deterministic approaches.
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