762 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

may be used. In the limit, the complexity of the estimation procedure The Inversion Algorithm for Digital Simulation
reaches that of a fault simulator. However, it appears that we can

obtain reasonable estimates and yet restrict the complexity close to Peter M. Maurer

linear in the number of lines since the segment length does not have

to be increased with the circuit depth. The segment length can b% .) N . .

- . . S bstract—The inversion algorithm is an event-drivenalgorithm, whose
reduced by using an efficient graph representation of the circuit wh tformance rivals or exceeds that of levelized compiled code simulation,
nonfan-out nodes have been collapsed. Such a graph preservese{¥e at activity rates of 50% or more. The inversion algorithm has several
path structure [6]. An interesting problem is to find the optimurmnique features, the most remarkable of which is the size of the run-time

segment length for a given circuit structure such that the estimatig®fle- The basic algorithm can be implemented using no more than a
error is minimized or eliminated page of run-time code, although in practice, it is more efficient to provide

. . . . _several different variations of the basic algorithm. The run-time code is
Test set reorder'lng [1] and polynomial time alg_orlthms.to finghdependent of the circuit under test, so the algorithm can be implemented
maximum cardinality cutsets [5] are other alternatives to improwther as a compiled code or an interpreted simulator with little variation
the accuracy of count-based estimators. However, our method irbperformance. Because of the small size of the run-time code, the run-
improving the accuracy of the estimation procedure is less suscepti}ﬂﬁe portions of the inversion algorithm can be implemented in assembly
o nguage for peak efficiency, and still can be retargeted for new platforms
to the nature of the circuit and the test set used, and hence, maxfhg

)) little effort.
a viable alternative.

I. INTRODUCTION

REFERENCES Of all the tools available to the modern very large scale integration

[1 p d'S. M. Reddv. “An efficient i thod (VLSI) designer, simulation is probably most important. The cost
. Pomeranz and S. M. Reddy, “An efficient nonenumerative metho g . B - o
estimate the path delay fault coverage in combinational circUiEEE Eﬁ fabricating a VLSI design is so high that it is necessary to

Trans. Computer-Aided Desigwol. 13, pp. 240-250, Feb. 1994. verify and debug the product before committing it to silicon. Despite
[2] K. Heragu, “Approximate and statistical methods to compute delay fausteady improvements in simulator performance, it is not unusual
ig\éirage,"M-S- thesis, Dept. ECE, Rutgers Univ., Piscataway, NJ, Mfgr a VLSI designer to spend more time on simulation than on
[3] K. Héragu, M. Bushnell, and V. D. Agrawal, “An efficient path delayany other acthlty: Ther.e are many dlff.eren.t styles of SImuIa.tlon,
fault coverage estimator,” iRroc. 31st Design Automation Confune from high-level simulation at the algorithmic level, to electrical
1994, pp. 516-521. simulation using systems of differential equations. As a general
[4] K. Heragu, J. H. Patel, and V. D. Agrawal, “Improving accuracy in pathule, the more detailed the simulation, the more time consuming
delay fault coverage estimation,” ifroc. 9th Int. Conf. VLSI Design it pecomes. Logic simulation represents a compromise between

[5] %ar;{a;%?g, gp._l_:laZQZO—de;S. and D. Karayiannis, “iImproved nonenumellg_e extremes of algorithmic simulation and electrical simulation.

tive path-delay fault-coverage estimation based on optimal polynomidMthough more time consuming than algorithmic simulation, it is
time algorithms,”IEEE Trans. Computer-Aided Desigrol. 16, pp. efficient enough to be used as a primary debugging tool. While
309-315, Mar. 1997. it is not as detailed as electrical simulation, the logic gates that

[6] M. Gharaybeh, M. Bushnel, and V. D. Agrawal, "An exact non-comprise the logic model can be mapped one-to-one into the electrical
enumerative fault simulator for path-delay faults,” Rroc. Int. Test .
Conf, Oct. 1996, pp. 276—285. components of the final product.

Over the past several years, there has been a steady flow of
papers describing new more efficient methods of logic simulation
[1]-[14]. This research makes it obvious that there are two methods
for improving the performance of logic simulation: speed up the
simulation of individual gates, or simulate fewer gates. Until now,
these two methods have worked at cross purposes to each other. Some
simulators have used relatively complex algorithms for reducing the
number of gates simulated, thereby increasing the simulation time for
each gate. Other simulators have improved the speed of individual
gate simulations by reducing or eliminating scheduling code, thereby
increasing the number of gate simulations that must be performed
for each input vector. When all scheduling code is eliminated, the
simulation time for each input vector becomes constant, and is no
longer dependent on changes in the inputs. Such simulators are termed
oblivious.In contrast, simulators whose performance varies from one
input vector to another are termexvent-driven[2]. (This term is
used for simplicity and does not necessarily imply that the simulator
processes events.)

Manuscript received June 7, 1995; revised June 20, 1996 and July 7,
1997. This work was supported in part by the National Science Foundation
under Grant MIP-9403414 and by the University of South Florida Center for
Microelectronics Research. This paper was recommended by Associate Editor
K. Mayaram.

The author is with the Department of Computer Science and Engineering,
University of South Florida, Tampa, FL 33620 USA.

Publisher Item Identifier S 0278-0070(97)07566-0.

0278-0070/97$10.00 1997 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997 763

o r—, NOT/BUFFER:
. . L Schedule OutputEvent;
i)] K] B~ 1]
B } B
ed - XOR/XNOR:
[o i if OutputEvent Not Scheduled Then
Schedule OutputEvent;
Fig. 1. Useless simulation. else
Deschedule OutputEvent;
Endif

Fig. 3. Event handlers for NOT/XOR.

G 1 ,.nl"' If Value.of. X'= Dominant.Value.of.G Then
Count.of.G := Count.of.G + 1;
Fig. 2. Unpropagated change. If Count.of.G =1 Then
Output.of.G := Dominant.Value.of.G;
EndlIf;
Else
The simplest form of oblivious simulation is levelized compiled Count.of.G := Count.of.G - 1;
code (LCC) simulation, in which each gate in the circuit is simulated If Count.of.G = 0 Then .
once per input vector. Many of these gate simulations produce no Endﬁ_”tp”t'o’r'e = NOT Dominant. Value.of.G;
useful output because they do not cause a change in any output Endif;: ’
net. (Any net visible to the user can be considered an output
net, regardless of whether it is an actual output of the circuitjg. 4. Original counting algorithm.
Event-driven simulation is the most common method for eliminating
useless simulations. In a typical event-driven simulation, an event is
generated whenever a net changes value. A gate is simulated if 8adause any change in an input implies a change in the output. An
only if an event occurs on one of its inputs. Although this technigqudentical set of tests could be used for all four gate types, but because
eliminates many useless simulations, it does not eliminate all of the¥OR and XNOR gates have more than one input, it is possible to
Even if the inputs of a gate change, this change may not propaggtepagate two or more simultaneous events through the gate. Because
to an output net. This can occur in two ways. First, the change in tiwo consecutive simultaneous events cancel one another, the tests for
gate input may not produce a change in the gate output. This situat@R and XNOR have been optimized to eliminate consecutive events
is illustrated in Fig. 1. Second, the change may propagate throug the gate output. When an event propagates through the gate, the
the gate, but be “absorbed” by some other gate before reachingadgorithm tests the queue to determine whether there is already an
output net, as illustrated in Fig. 2. event queued for the net. If so, the existing event is removed from
Theinversion algorithrris able to eliminate all useless simulationghe queue, and no new event is queued. Since NOT and BUFFER
of the first kind, and some useless simulations of the second kigghites have a single input, no test for collapsed events is necessary.
The problem of eliminatingll useless simulations is currently underThe event handlers for NOT/BUFFER gates and XOR/XNOR gates
study. are illustrated in Fig. 3.
The tests for AND, OR, NAND, and NOR are more complex, and
are based on the counting algorithm originally described by Schuler
Il. AN OVERVIEW OF THE INVERSION ALGORITHM [16]-[18]. The counting algorithm, which is illustrated in Fig. 4, was
Because the aim of the inversion algorithm is to eliminate gateiginally intended for use in a conventional event-driven simulation.
simulations that produce no change in the output of a gate, it wims Fig. 4, it is assumed that there has been a change in an input
designed around the underlying principle that no gate should Be to the gateG. The dominant value, 1 for OR/NOR and O for
simulated unless its output is guaranteed to change value. Thus, WABID/NAND, is a parameter to the algorithm.
an event occurs on the input of a gate, it is necessary to determindhe counting algorithm of Fig. 4 assigns a value to the output
whether the change will propagate through the gate, and suppressahé&: if and only if the output changes value. This algorithm is
gate simulation if no propagation will occur. It is not immediatelyextremely efficient because it uses the value of a single input and
clear that making such a determination is any more efficient than internal state to compute the value of the output, rather than
simply simulating the gate, but it turns out that this is indeed theomputing a function using all input values. The counting algorithm
case. used by the inversion algorithm is used to predict changes rather
When an event occurs on a gate input, the inversion algorithiiman compute output values, and is much simpler than the algorithm
performs a set of tests to determine if the event will propagate througfmown in Fig. 4. One reason for the simplification is the underlying
the gate. The tests must be individualized for different gate typessheduling technique, which is based on the shadow algorithm [12].
but the number of different kinds of tests that must be performed the shadow algorithm, each event is represented by the structure
is surprisingly small. In its most basic form, the inversion algorithrpictured in Fig. 5.
supports the eight gate types AND, NAND, OR, NOR, XOR, XNOR, The inversion algorithm generates a dedicated event structure for
NOT, and BUFFER. These gate types provide all essential functioesich input net, each of which contains an indirect pointer to the event-
and can be used as building blocks to construct more complex gptecessing routine for the net. The use of indirect pointers allows
types. However, it is not necessary to provide specific tests for eacheskent handlers to be changed at run time. In the counting algorithm,
these eight types. One set of tests is provided for NOT and BUFFH#Re test for dominant values can be eliminated by observing that
gates, a second set of tests is provided for XOR and XNOR gates, andcessive events on an input net will cause it to alternate between
a third set of tests is provided for AND, NAND, OR, and NOR gatests dominant and nondominant value. The inversion algorithm uses
The tests for the XOR, XNOR, NOT, and BUFFER gates are triviaWo event handlers, one for dominant values and one for nondominant

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

Mgt Evenl in Cluwsue
Fravious Evant in Cueus

Ewent Processing Routing

Met-SpecficDiata

Fig. 5. Event structure.

Dominant:
Decrement DominantCount;
If DominantCount=0 Then
If OutputEvent Not Scheduled Then
Schedule OutputEvent
Eise
Deschedule OutputEvent
EndIf .
Endif
EventProcessingRoutine := AddressOf NonDominant;

NonDominant:
Increment DominantCount;
If DominantCount=1 Then
If OutputEvent Not Scheduled Then
Schedule OutputEvent
Else
Deschedule OutputEvent
EndIf
Endif
EventProcessingRoutine := AddressOf Dominant,;

_ e
D

=

Fig. 7. Circuit fragment.

Fig. 8. Complex initialization requirements.

The elimination of net values has some surprising consequences
which are worth noting. Inverted outputs and noninverted outputs
are identical. Therefore, for simulation purposes, AND is identical
to NAND, OR is identical to NOR, XOR is identical to XNOR, and
NOT is identical to BUFFER. Because the increment and decrement
operations are performed with respect to dominance rather than
specific values, AND and OR gates are also identical for simulation
purposes.

In a sense, the inversion algorithm performs traditional gate
evaluations, but simply processes a series of events. These events
differ in one important way from the events that occur in traditional
event-driven algorithms. In traditional event-driven simulation, each
event corresponds to a change in a single net, while in the inversion
algorithm, each event corresponds to a change in a single fan-

out branch of a net. Thus, a single event in a traditional event-
driven algorithm may correspond to several events in the inversion
algorithm. Fig. 7 illustrates why this is necessary.

In Fig. 7, X is the output of gat&r1, and the input forG2 and
values. When the dominant-value event-handler executes, it replaé& However, the dominant value f@¥2 is the nondominant value
the event-processing-routine address in the event structure with the3, and vice versa, so when an increment operation is performed
address of the nondominant event handler. The nondominant-valae G2, a decrement operation must be performeddar Although
event handler performs similarly. The two event handlers executelinth of these operations could be performed during the processing
strict alternating fashion for each input net, with no test for dominanf a single event, it is more straightforward to treat them as separate
value required. The event processing for AND, NAND, OR, and NORvents. This implementation style also facilitates the incorporation of
gates uses the same event-collapsing procedure as XOR and XN@Rrsion events for computing required net values. In Fig. 7, if net
gates. The event handlers for dominant and nondominant values &ravere visible to the user, the simulator would add a third event to
illustrated in Fig. 6. compute the value of.

The event handlers of Figs. 3 and 6 do not contain separate codénitialization for the inversion algorithm is somewhat more com-
for scheduling gate simulations. Because no gate is scheduled ftgx than for more conventional simulation algorithms. Although
simulation unless its output is guaranteed to change value, gdte dominant, nondominant sequence is predictable for the inputs
simulations are reduced to simple inversion operations. (This assum&&aND, NAND, OR, and NOR gates, it is necessary to commence
that a two-valued logic model is being used. The inversion algoriththe simulation with the correct event handler. As Fig. 8 illustrates,
supports more complex logic models, but this is beyond the scopesimple default is not sufficient to guarantee correct operation of
of this paper [19].) Surprisingly, because the correct operation thfe algorithm.
the inversion algorithm does not require net values, it is possible toln Fig. 8, any time netd changes to the dominant value, rét
eliminate most gate simulations entirely. The event handlers pictureltinges to the nondominant value, and vice versa. It is necessary to
in Figs. 3 and 6 do not need to test net values to schedule ninitialize the simulation in such a way as to guarantee that any time
events. There are only two cases where net values are requiredh® nondominant event handler is used for Aethe dominant event
the inversion algorithm. Net values are required for all primary inputgandler will be used for netl. The determination of this requirement
because it is necessary to compare new and old net values wheraanot be made simply by examining gai. It is necessary to
new input vector is read. It is also necessary to maintain net valumsamine the entire circuit to determine the correct initialization state
for any net visible to the user so that correct output values can fme the inputs ofG2. To determine the correct initialization for all gate
printed after an input vector has been simulated. Since the processimuuts, a single simulation is performed at compile time to determine
of events does not depend on net values, gate simulations cancbesistent values for all nets in the circuit. These net values are then
performed during event processing without affecting the correctnassed to determine the initial event handler to be used for each fan-out
of the algorithm. Thus, when the output of a gate is visible to theranch and the initial dominant count for each gate. (The three-valued
user, the event handlers will schedule a special event to invert thgersion algorithm eliminates the preliminary simulation step, but
value of the output. this is beyond the scope of this paper.)

Fig. 6. AND/OR event processors.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997 765

—
cun Heasd | Event | Even |-
i i (e
first fanout branch | Heast ¢ -FRTER
last fanoul branch
go addoss Hest2 v Bt I
lack |
Heag-3
Fig. 9. Structure of a shadow. m
s |
lll. I MPLEMENTATION DETAILS Fig. 10. Structure of the simulation queue.

The inversion algorithm consists of two major phases, the trans-
lation phase which prepares the circuit for simulation, and the

.) . : . . Like LECSIM, th -delay i i Igorithm leveli h
simulation phase which performs the simulation. The primary func- ke LECS the zero-delay inversion algorithm levelizes the

: .) rcuit and creates one event queue per level. Each queue consists of
tion of the translation phase is to prepare the data structures useolc q P 4

. . . . i a c%ubly linked list of shadows terminated by a special shadow known
the simulation phase. Most current implementations of the inversion . S . .
. . . .~ as the queue trailer. The queue trailer is responsible for advancing
algorithm also generate run-time code, but this code could just as . . L
. . . . the simulation from one queue to the next, and for terminating the
easily be loaded from a library of precompiled routines.

The first step in the translation phase is to parse the CirCl:]*,ljtmulatlon when appropriate. Fig. 10 illustrates the structure of the

- o . _gueue. As Fig. 10 illustrates, the queue headers are organized as an
description, and translate it into internal data structures. Once this has . . X . i

L) A array of pointers, each of which points to a doubly linked list of
been done, the circuit is levelized, the gates of the circuit are sorts dows
into levelized order, and each gate is simulated once to generate a S%n ’

of consistent values. Next, a SIMULATION fan-out branch is added e simulation of an mpu_t vectqr beg_lns with the primary Input
L . tests. The value of each primary input is compared with the value
to each net visible to the user. Finally, a data structure known

. . ﬁ?m the previous vector (or with zero for the first vector), and if there
a shadow is generated for each fan-out branch of each net in the
circuit IS'a change, the fan-out branches of the primary input are inserted into
s . ueue zero. Once all primary input tests are complete, the simulator
Fig. 9 illustrates the structure of a shadow. Ttext andprevious q P y Inp P

. . : . loads the address of the first shadow in queue zero intauhent-
shadow fields are used to link the shadow into the event list. Theh
N) o . shadowregister and branches to the subroutine address contained in
event list is doubly linked to facilitate dequeueing of events. Tt}%e shadow
subroutine field points to the event processing routine for this . -, .
. . . When an event is processed, additional shadows may be inserted
fan-out branch. Thdirst and last fan-out branch fields contain . . :
into other queues. Once the last queue has been processed, simulation

pointers to the first and last shadow that will be scheduled whe - - .
0 {he current vector terminates, and a new vector is read. Prior to

an event propagates through the gate. All fan-out branches of a net .. L .
. . reading the new vector, the value of each net visible to the user is

are scheduled and descheduled simultaneously. To make this Process . . :
. . . . Honn ed. Fig. 11 gives the code for the INCREMENTX routine.

more efficient, all shadows for a net are statically linked during the

translation phase. This allows all shadows for a net to be inserted

into the queue or deleted from the queue as a unit. IV. OPTIMIZATIONS OF THE INVERSION ALGORITHM

Thelock addressfield contains the address of the dominant count

for the gate associated with the fan-out branch. For NOT, BUFFERl,Thereth"jlre Sffvf::l nsmplcfe t%ptl?gga:l?n: tTat r?tﬁrr]n S'gﬂ'f'criml}t/ ilrrr]{
XOR, and XNOR gates, this field is unused. Finally, theeue crease the periormance of the ersion aigo : € mos .

. o ortant of these are the elimination of NOT and BUFFER gates,
addressidentifies the queue into which the shadow is to be |nserte%‘e climination of XOR and XNOR aqates. and the collansing of
Eight different event processors are used during the simulati% iminat Y ! psing

phase of the inversion algorithm. These occur in pairs, and are cal Kynogeneous and heterogeneous connections.
INCREMENT, INCREMENTX, DECREMENT, DECREMENTX,
NOT, NOTX, XOR, and XORX. The second routine of each pair i&. Elimination of NOT and BUFFER Gates

used for shadows that are at the end of a subchain, while the seconfls the event-handler of Fig. 3 illustrates, the processing of NOT
is used for the other shadows. The two subroutines of each pair gfgj BUFFER gates is a no-op operation in the inversion algorithm.
identical, except that the second routine removes the subchain froien the input of a NOT or a BUFFER gate is processed, the only
the queue. The routines were created in pairs to allow dequeueiigion that is taken is scheduling the fan-out branches of the output of
to be performed without a conditional test. These routines are mqf@ gate. The same simulation result can be achieved by eliminating
detailed versions of the algorithms presented in Figs. 3 and 6. the scheduling of NOT and BUFFER inputs and scheduling their
We have created several different implementations of the inversipgh.out branches instead. Fig. 12 illustrates this procedure. For the

algorithm. Most of these use the zero-delay timing model, and &gjt.delay and multidelay timing models, special procedures are
based on the LECSIM simulator developed by Wang [13]. (Unit-delagquired to preserve the delay of the gate.

implementations of the inversion algorithm exist, but are beyond the

scope of this paper.) LECSIM is a zero-delay event-driven levelized =~

compiled code simulator. In LECSIM, gates are levelized and a queBe Elimination of XOR and XNOR Gates

is created for each level in the circuit, including the zero level. It is also possible to eliminate all XOR and XNOR gates. As with
When a gate is queued for simulation, it is placed in the queue ti®T's and BUFFER'’s, the only action taken when processing the
corresponds to its level. Queues are processed in order by level. i@ut of an XOR or XNOR is scheduling or descheduling the fan-out
asynchronous cyclic circuits, queues may be processed more thaanches of the gate. One can eliminate the processing of the input
once. branch by scheduling or descheduling the output branches of the gate

766 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

INCREMENTX:
Current_Shadow->subroutine = &DECREMENTX;
(*Current_Shadow->Lock)++;
if ((*Current_Shadow->Lock) == 1)

if (Current_Shadow->first_fanout->next == NULL)
{
Current_Shadow->last_fanout->next =
Current_Shadow->Queue->next;
Current_Shadow->Queue->next->previous =
Current_Shadow->last_fanout;
Current_Shadow->Queue->next =
Current_Shadow->first_fanout;
Current _Shadow->first_fanout->previous =
Current_Shadow->Queue;

}

else

Current_Shadow->last_fanout->next->previous =
Current_Shadow->first_fanout->previous;
Current_Shadow->first_fanout->previous->next=
Current_Shadow->last_fanout->next,;
Current_Shadow->last_fanout->next = NULL;

}
}

Temp = Current_Shadow->next;
Current_Shadow->next = NULL;
Current_Shadow = Temp;

Goto *Current_Shadow->subroutine;

Fig. 11. INCREMENTX event handler.

B

® D g
I_G-L; -

1)

®

@ (b)

L A

| H
L

A4 1
TTT

44

Fig. 14. Homogeneous connections.

LLY
T

A4 1
LCoe

Fig. 15. Heterogeneous connections.

of G'3 must maintain their identity, and cannot be grouped with the
fan-out branches off1 and G2. This problem arises only if one or
more XOR input nets fan out to other gates. One could simply ignore
event collapsing in these situations, but because of the relative rarity
of XOR and XNOR gates, XOR/XNOR elimination has not been
implemented in any current realization of the inversion algorithm.

C. Homogeneous and Heterogeneous Connections

Once all NOT, BUFFER, XOR, and XNOR gates have been elim-
inated from the circuit, all fan-out branches other than primary inputs
and outputs must be connections among AND, OR, NAND, and

Fig. 12. Elimination of a NOT gate. (a) Before elimination. (b) AfterNOR gates. These types of connections can be further categorized as

elimination.

DB

.jE_.f__
= B
)

Fig. 13. Elimination of XOR gates.

instead. This can interfere with block scheduling of fan-out branch

as Fig. 13 illustrates.

Suppose that gaté’3 of Fig. 13 has been eliminated, and tha
events propagate through boffii and G2. Assume that the event
for G1 is processed first. When the event fGi is processed, it is
necessary to schedule events for the input&éfand G5. When the

homogeneouandheterogeneousonnections. To distinguish between

the two, suppose that nett is the output of¢1 and the input of72,

and suppose that an event on the inputGdf propagates tA. This

will cause the dominant counts of both gates to change. If both counts
are incremented or both are decremented, then the connection is
homogeneous; otherwise, it is heterogeneous. Because a net may fan
out to different types of gates, the heterogeneous and homogeneous
properties apply to fan-out branches rather than to entire nets. It
is possible to categorize connections at compile time using the
tables illustrated in Figs. 14 and 15. When using these tables, it is
necessary to do the categorizatioeforeNOT gates are eliminated.

An intervening NOT gate changes a heterogeneous connection to
a homogeneous connection, and vice versa. Two consecutive NOT
Jates cancel one another. A connection that passes through an
XOR/XNOR gate cannot be categorized as either heterogeneous or
pomogeneous because the dominant counts of the two gates will
sometimes move in the same direction and sometimes move in
opposite directions.

event forG2 is processed, it is necessary descheduldhe events D- Elimination of Homogeneous Connections
for the inputs ofG4 and G5, and schedule an event for the input It is possible to eliminate all homogeneous connections from a
of GG6. If events are to be collapsed properly, the fan-out branchescuit using the procedure illustrated in Fig. 16. To eliminate the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997 767

A A
A | | -
B— — y B— 5
O I . L Q a 133 =
0— F—— j—a 00— —-l'III " D
E S E s
Fig. 16. Eliminating a homogeneous connection. B
Fig. 19. Multilevel collapsed connections.
G 1
A G2 [A
. o s) C- A
G e/ B— | B—it
a3 } e }I ~ 183 5 . —-. 33
C— az 0. e
Fig. 17. Eliminating a heterogeneous connection. B _)
Fig. 20. Layered collapsing of connections.
A —
B e -
G]) C' to change or foboth A and B to change. The total effect of both
changes in4d and B must equal the effect tha¥1 would have had
Fig. 18. Collapsed AND-OR connection. in the original circuit, and must also equal the effect thahas on

the collapsed gate. Neither nor B by itself can have enough effect
on the dominant-count to cause a change in the outpu¥1fG2.

connection/1, one simply removes gatél, and treats the inputs Because of the symmetry of the circuit, the effectdofand B must
A, B, and C' as if they were inputs of32. The initial value of be the same.
the dominant count forG2 is recomputed by adding the initial There are many ways to assign increment/decrement values to the
dominant-counts ofs1 and G2 and subtracting one. input netsA, B, and C' that will achieve these requirements. One
The operation illustrated in Fig. 16 could be performed in &cceptable procedure is to assign the value 1 to the i@ipaind 0.5
conventional simulator, but the benefits are not as clear. After tHethe inputs4 and B. The outputQ changes when the dominant
collapse, any event on inputd, B, and C would result in the count changes from_a value less than 1 to a value greater than or
simulation of a five-input gate, regardless of whether the event wolgu@l to 1, or when it changes from a value greater than or equal to
have propagated té1 in the uncollapsed circuit. In the inversionl t© @ value less thgn 1
algorithm, the processing of events on the inputsB, and C is _Co_llapsed connections with more than two levels follow thg same
identical in both circuits, and all processing for ditis eliminated in Principles as two-level collapsed connections. Values are assigned to
the collapsed circuit. Even if collapsing of heterogeneous connectidiBUts, depending on their relative power to change the output of
proved to be beneficial in a conventional simulation, the ability t§1€ collapsed gate, and there are many different assignments that will
collapse connections is limited to those types illustrated in colun@¢hieve the desired results. Fig. 19 illustrates a three- and a four-level

1 of Fig. 14. The connections in column 2 and connections wiffP!lapsed gate.) i
intervening NOT gates would pose a problem. The values for the inputs of gatel /G2/3 can be calculated in the

following manner. Assume that, B, C, andD have been initialized
with the logic value of 0. The increment @ is set to 1. The total
E. Eliminating Heterogeneous Connections effect of theG1/G2 combination must be equal to the effect Bf

The procedures for eliminating heterogeneous connections &iece A and B are symmetric inputs, the increments assigned to
more complex than those for homogeneous connections, and atw B should be equal. Since the output@® changes from O to 1
not always eliminate all operations for the connection. There afthereby changing the output 6f1/G2/G3) whenC' changes to 1
two procedures for eliminating heterogeneous connectionslithe and eitherd or B changes to a 1, the sum of the increments assigned
ear method,and thelayered methodThe layered method allows to A andC must equal 1. Since a change in betland B, without an
more connections to be eliminated, but retains more operations &mcompanying change ifi, will not cause the output af1/G2/G3
eliminated connections. to change, it is necessary that the sum of the increments assigned to

As Fig. 17 illustrates, the linear method can eliminatdy one A and B be less than 1. This implies that the increment assigned
input from any gate. It is possible to collapse eith@2 or G3 to C' must be greater than the increments assigned tnd B. To
into G4. However, onceG2 has been collapsed int64, it is no achieve these requirements, an increment of 0.25 is assigned to both
longer possible to collaps€3 into G4. It is, however, possible to 4 and B, while an increment of 0.75 is assigned@o Using similar
collapse gates in linear fashion by first collapsifig into G2, and principles, the increments assigned to the input&of G2/G3/G4
then collapsing th&1/G2 combination intoG4. areA — 0.125, B — 0.125,C — 0.25,D — 0.75, F — 1. As with

The linear method operates by changing the increment and dedfe two-level collapsed gate, the output changes value only when the
ment values used to update the dominant count of a gate. Insteadjatle count changes from a value less than 1 to a value greater than
using a uniform value of 1, the linear method uses different values equal to 1, or from a value greater than or equal to 1 to a value
for different inputs. Consider the collapsed gate illustrated in Fig. 1&ss than 1.

In Fig. 18, a single dominant count will be maintained for the The layered method of collapsing heterogeneous connections al-
combined gate71/G2. Suppose that all three input, B, andC' lows arbitrary collapsing of connections, as illustrated in Fig. 20, but
have the value 0. The dominant count corresponding to this inmequires more computation in the simulation phase than the linear
state is zero. For the output 6f1/G2 to change, it is necessary for method.

768 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

INCREMENT LAYERED 2 x andy. To collapse this net, it is necessary to move the two inputs
Current_Shadow->subroutine = &DECREMENT _LAYERED 2; and F' to bothG4 andG5. Because the inversion algorithm requires
(*Current_Shadow->Lock[1])++; one event per fan-out branch, this doubles the number of events that

if ((*Current_Shadow->Lock{1]) ==1) must be processed when eitigror F' changes value. In the original

(*Current_Shadow->Lock[0])-~; circuit, a change in neE will cause one event to be processed, while

if ((*Current_Shadow->Lock[0]) == 0) in the collapsed circuit, two events will be processed. For the first
circuit, a change in netl will cause one event to be processed in
if (fanouts not on queue) both the original and the collapsed circuit.
{ insert fanouts into queue: It is not immediately clear if the elimination of the events .on
} q ’ and y will offset the effect of doubling the input®& and F. To
else further characterize the situation, the average number of events on the
{ inputs and outputs off3 were calculated, assuming all input vectors
remove fanouts from queue; to be equally likely. For the uncollapsed connection, the average
} number of events o, F, «, andy is 1.75 events per input vector.
} } After collapsing the connection, the average number of events on
Current_Shadow = Current_Shadow->next; and F is 2.00 events per input vector. On average, the uncollapsed
Goto *5urrent_ Shadow->subroutine; connection will be more efficient. Under the same assumptions, the

average number of events eh B, andi is 1.375 for the uncollapsed

connection and 1.000 for the collapsed connection. In this case, the

collapsed connection is more efficient.

o s - Extending this analysis to gates with larger numbers of inputs and

B— &1 }'| [H— @3 larger fan-outs, an uncollapsed two-input AND with a fan-out of 3

o - -] ;i a o— averages 2.125 events per vector, while the collapsed gate averages

3.00 events per vector. For a three-input AND with a fan-out of 2,

}-— the uncollapsed gate averages about 1.94 events per vector, while the

collapsed gate averages 3.00 events per vector. A three-input AND

B E 34 with a fan-out of 3 gives even more striking results with an average
< j F—1] R of 2.16 events per vector for the uncollapsed gate and 4.50 events
¥ ! E

F

Fig. 21. INCREMENT routine for two-level connections.

™ i

per vector for the collapsed connection. This analysis shows that it
e % is advantageous to eliminate a connection only if it does not fan out
= to more than one gate.

Fig. 22. Collapsing gates with fan-out. V. PERFORMANCE EVALUATION

i

Four prototype simulators were constructed to test the performance
Unlike the linear method, which uses a single dominant coufif the inversion algorithm and the various optimizations discussed
for each gate, the layered method preserves the dominant coudftdhe Previous section. The first prototype is unoptimized; the
of the original gates. Because the original dominant counts atgcond eliminates NOT and BUFFER gates; the third eliminates
preserved, the number of run-time increment/decrement operatigi§nogeneous connections, NOT gates, and BUFFER gates; and the

is not reduced. nor is the number of tests reduced. However. fQurth eliminates heterogeneous connections, homogeneous connec-

operations are performed hierarchically without any intermediati@ns, NOT gates, and BUFFER gates. Heterogeneous connections

scheduling, which improves run-time performance. To illustrat¥/€re eliminated using the Iayergd method. The linear method of elim-
assume that in Fig. 20, input of the collapsed gate changes from dnatlr_lg heterogengous connections was not tested. All prototypes are
to 1. The dominant count a1 is decremented, and if the new valud€Velized event-driven zero-delay simulators based on the LECSIM
is not 0, no further processing is done. However, if the new value 7&0d€l. ,

0, then the dominant count @3 is incremented. If the new value 1"€ ISCAS-85 benchmarks [15] were used to certify the cor-
is 1, then the fan-out branches 68 are scheduled. No schedulingrecmess of the proto_types. Each circuit was simulated with 5000
is done for the fan-out branches 6f or G2. randomly generated input vectors, and the outputs were compared

The shadow of a layered connection differs from that illustratdg those of the FHDL simulator [20], a levelized compiled code
in Fig. 9 in that theLock component of the shadow is an arraysimulator that has been in use for several years. These same circuits
of pointers rather than a single pointer. Fig. 21 illustrates the cod@d input vectors were used to evaluate the relative performance of
for a two-level layered connection. This code corresponds to tH¥ four prototypes and the FHDL simulator. Each simulation was
increment processor of a simple connection. As is the case for simp# ©n @ SUN-4 IPC running SunOS with 12 Mbytes of memory
connections, both increment and decrement processors are used2fife@ dedicated disk drive. This system was isolated from outside

increment and decrement processors alternate with one another. INfluences as much as possible during the execution of the tests.
To isolate the effects of each algorithm, each simulation was done

) three different ways. First, a complete simulation was done with

F. When to Collapse Connections full input and output. Next, the output functions of the simulators
Although it is possible to collapse all homogeneous and heterogeere disabled, leaving all input and simulation functions intact, and
neous connections in a circuit, it is not always advantageous to @csecond set of simulations was run. Finally, both the simulation
so. Consider the two circuits illustrated in Fig. 22. functions and the output functions were disabled, leaving only the
In the first circuit of Fig. 22, the net does not fan out, so the input functions intact, and a third set of simulations was run. Each
connection can be collapsed by moving the inpditand B of G1 to of these simulations was performed five times, and the results were

G2. In the second circuit, the output 6f3 fans out into two branches averaged to minimize errors in the UNIX /bin/time command, which

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997 769

TABLE |
EXPERIMENTAL RESULTS

Circuit | Unopt. NOT Hom. Hom/Het LCC Conv. Activity

Elim. Elim. Elim. Event-Drv Rate
€432 1.7 1.6 1.4 1.2 0.5 46.4 59.4
€499 2.0 1.9 1.9 1.9 0.6 51.1 63.2
c880 3.8 3.5 3.2 2.7 1.2 87.1 57.1
¢1355 6.5 54 54 4.2 1.9 177.2 56.5
c1908 8.1 5.8 5.6 4.5 4.4 330.2 56.8
c2670 17.7 13.2 12.2 11.7 5.3 368.2 55.7
©3540 16.5 11.6 10.0 9.3 8.4 531.1 52.4
€5315 36.9 28.8 28.1 22.8 21.7 1024.0 63.8
c6288 40.4 40.0 39.7 33.8 30.1 9555.9 61.5
c7552 52.6 40.6 39.4 33.5 40.7 1483.2 60.7

was used to report the timings. The “user” field from the output of tte more complex timing models and multiple-valued logic models.
/bin/time command was used to determine the execution time. Thkere is also work in progress to identify further optimizations, and
results of the read-only simulations were subtracted from the resuldsfurther characterize the underlying theoretical issues. The work
of the no-print simulations to obtain the results reported in Table I. Allescribed here should provide the foundation for much new research
simulations, except those for conventional event-driven simulatioren the high-performance simulation of VLSI circuits.
were run as compiled code simulations. The C language was used as
the target language for all of the simulators. No optimization flags REFERENCES
were used when Comp”ing the simulators. [1] R. E. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffler, “COS-

As Table | indicates, the activity rates of the circuits tested ranged MOS: A compiled simulator for MOS circuits,” ifroc. 24th Design

j % to over 60%. At this level of activity, levelized Automation Conf. 1987, pp. 9-16. ; P
from Jl_"St over 50_ 0o« 0. ‘ ’ [2] D. M. Lewis, “A hierarchical compiled code event-driven logic simula-
complied code simulation (the LCC column) typically outperforms = tor,” IEEE Trans. Computer-Aided Desigwol. 10, pp. 726-737, June
event-driven simulation by a significant margin. However, for the 1991. _ _
inversion algorithm with deletion of homogeneous and heterogeneol3l gﬂy'nfﬁr'gﬂguz”r?aﬁwgﬂé%ﬁutL%(ésisg';nfﬁgatg;S gsfe&irdivel'ggé“ent of
connections, the timings are essentlally_the_ same for th(_a cwcglt[a] W. Y. Au, D. Weise, and S. Seligman. “Automatic géneration of
€1908, ¢3540, c5315, and ¢6288. For circuit c7552, the inversion” compiled simulations through program specialization,”Aroc. 28th
algorithm actually outperforms levelized compiled code simulation. Design Automation Conf1991, pp. 205-210.
The performance of both the inversion algorithm and of conventionap] #- W. /?I:Dpely “Sim:_lgtigngig_ital ICir7CUitS V\ggoggsbitsper VT&Z{;EEE
Ay ; ; ; i rans. Computer-Aided Desigwol. 7, pp. —993, Sept. .

eve_n_t driven 'SImucljatlor; are proportional to Ll‘;e i‘actlvlltyhrate. I th.i[ri]i] C. Hansen, “Hardware logic simulation by compilation,” Rmoc. 25th
activity rate is reduced to a more reasonable level, the executi Design Automation Conf1988, pp. 712-715

times of these algorithms will be reduced proportionally. [7] L. Wang, N. Hoover, E. Porter, and J. Zasio, “SSIM: A software
levelized compiled-code simulator,” iRroc. 24th Design Automation
Conf, 1984, pp. 473-478.
VI. CONCLUSION [8] z.Barzilai, J. L. Carter, B. K. Rosen, and J. D. Rutledge, “HSS—A high

As the results of the previous section indicate, the inversion algo- nggfémlﬁtyorilgg Trans. Computer-Aided Desigvol. CAD-6, pp.
rithm is competitive with levelized compiled code simulation, even afg; p_Maurer, “Two new techniques for unit-delay compiled simulation,”
very high activity rates. When the activity rate is reduced to a more |EEE Trans. Computer-Aided Desigmpl. 11, pp. 1120-1130, Sept.
reasonable level, the performance of the inversion algorithm will ~ 1992. ' ' _
increase correspondingly, while the performance of LCC simulatidh®! Y- Lee and P. Maurer, “Two new techniques for compiled multi-delay

il in th P g)é. th pt' it t ted h simulation,” in Proc. SOUTHEASTCON’'92Apr. 1992.

V\{l _rfemaln _e same. since the activity .ra es reporte ere df; _ “Two new techniques for compiled multi-delay logic simulation,”

significantly higher than those that are likely to be encountered * in proc. 29th Design Automation Confl992, pp. 420—423.

in practice, the inversion algorithm can be expected to outperforite] P. M. Maurer, “The shadow algorithm: A scheduling technique for

levelized compiled code simulation in most practical situations. BOth_ COTF’”S?d angl_'nrt]eg)fewd simulatiofZEE Trans. Computer-Aided
- ; ; ; ; esign to be published.

In addlt.lon to its perf.chmance,. the Ir?verS|on ?'go”thm has Seyer I3] Z. Wang and P. M. Maurer, “LECSIM: A levelized event driven
other desirable properties. The inversion algorithm can be run inter- compiled logic simulator,” ifProc. 27th Design Automation Cont.990,
pretively with only a minimal impact on performance. Therefore, it pp. 491-496.
can be used for fast debugging of circuits during the initial phas€g!] S. P. Smith, M. R. Mercer, and B. Brock, “Demand driven simulation:

of the design cycle, and for more massive testing later in the design. BACKSIM,”in Proc. 24th Design Automation Cont987, pp. 181-187.

I ith onl . diff . f HS] F. Brglez, P. Pownall, and R. Hum, “Accelerated ATPG and fault
cycle with only minor di er_ences In per ormance. . . grading via testability analysis,” iRroc. Int. Conf. Circuits Syst1985,
Because of the small size of the run-time code, the inversion pp 695-698.

algorithm will be beneficial to tool developers who must suppoifté] D. Schuler, “Simulation of NAND logic,” irProc. COMPCON'72Sept.
many different types of development platforms. The run-time code_ 1972, pp. 243-245. , , _ _ .
of the inversion algorithm can be written and debugged in a fely?”] M- Breuer and A. FriedmarDiagnosis and Reliable Design of Digital
L . . Systems. Rockville, MD: Computer Science, 1976.

_hours, maqug it feasible to have several different assembly-langqug] M. Abramovici, M. Breuer, and A. Friedmamigital Systems Testing,
implementations of the same code. and Testable Design.New York: Computer Science Press, 1990.

The results shown here suggest that the inversion algorithm wil9] P. Maurer and W. Schilp, “Three-valued simulation with the inversion
be an effective tool for high-performance simulation of large circuits. ~ &/gorithm,” Dept. Comput. Sci. Eng., Univ. South Florida, Tampa, Tech.

. . . - Rep. DA-27, 1995.
In spite of this, there is a massive amount of research that must[%] P. Maurer, Z. Wang, C. Morency, A. Tokuta, and N. Bhate, “The

done to realize the full potential of the techniques described in this * Forida hardware design language,”Roc. SOUTHEASTCON'9@p.
paper. Work is currently underway to extend the inversion algorithm 430-434.

