4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 1, JANUARY 1992

Test Pattern Generation Using Boolean Satisfiability

Tracy Larrabee, Member, IEEE

Abstract—This article describes the Boolean satisfiability
method for generating test patterns for single stuck-at faults in
combinational circuits. This new method generates test pat-
terns in two steps: First, it constructs a formula expressing the
Boolean difference between the unfaulted and faulted circuits.
Second, it applies a Boolean satisfiability algorithm to the re-
sulting formula. This approach differs from previous methods
now in use, which search the circuit structure directly instead
of constructing a formula from it. The new method is general
and effective: it allows for the addition of heuristics used by
structural search methods, and it has produced excellent re-
sults on popular test pattern generation benchmarks.

I. INTRODUCTION

O produce reliable computer systems, defect-free

components must be available. Automatic test pattern
generation (ATPG) systems distinguish defective com-
ponents from defect-free components by generating input
sets that cause the outputs of a component under test to
be different if the component is defective than if it is de-
fect free. Existing algorithmic ATPG systems for single
stuck-at faults in combinational circuits fall into two
classes: the structural methods, which perform a topo-
logical search of the circuit under test, and the algebraic
methods, which generate test patterns by manipulating al-
gebraic formulas.

The Boolean satisfiability method is a new algorithm
for test pattern generation for single stuck-at faults in
combinational circuits that is neither a purely structural
method nor an algebraic one [8], [9]). This method is not
only practical but performs better than most systems now
in use. Before describing the Boolean satisfiability method
in detail we will briefly review the two classes of existing
methods.

Structural search methods use a data structure repre-
senting the circuit to be tested. To generate a test pattern,
they assign values that cause a discrepancy at the faulted
line (the fault site) and then search for consistent values
for all circuit lines such that the discrepancy is visible at
a circuit output. The most successful ATPG systems use
structural search methods. Of these, the most notable are
the D-algorithm, Podem, FAN, and SOCRATES [6], [7],
[16], [17].

Manuscript received May 2, 1990. This work was supported by a Digital
Equipment Corporation Student Fellowship. This paper was recommended
by Guest Editor J. Rajski.

The author was with the Department of Computer Science, Stanford Uni-
versity Stanford, CA. She is now with the Computer Engineering Board of
Studies, University of California, Santa Cruz, CA 95064.

IEEE Log Number 9103245.

Instead of performing a search on a data structure rep-
resenting a circuit, algebraic methods produce an equa-
tion describing all possible tests for a particular fault and
then simplify the resulting equation. The most famous al-
gebraic method is the Boolean difference method.

The Boolean difference of any function F with respect
to its variable x; is equal to

F(.xl, e
=) F(xl, “ e

s Xi—1s 03 Xivtr, *°° ’xn)

s Xi—1s 19 Xit1s " 9xn)-

The notation for this quantity is dF /dx;. The set of tests
for x; stuck at 0 is X; - dF /dx; and the set of tests for x;
stuck at 1 is X; - dF /dx; (where X; is the function repre-
senting the output of the subcircuit with output at x;).

Note that the validity of the formula does not change if
we introduce intermediate variables for any subformulas
of F(x;, - - -, x,). If we introduce an intermediate vari-
able, we do not change the permissible values for the
original variables. This changes the solution set, but only
because each satisfying binding will also contain bindings
for the introduced variables that are consistent with the
original variables. We could introduce intermediate vari-
ables for every line in the circuit.

Once the formula using the Boolean difference is ob-
tained, it is simplified using the basic laws of Boolean
algebra or by using identities specific to the Boolean dif-
ference [1]. The tedious nature of the algebraic manipu-
lations involved in solving formulas using the Boolean dif-
ference led to its disfavor as a practical tool for test pattern
generation [12], [14], [11].

The Boolean satisfiability method generates a formula
equivalent to that of the Boolean difference method, but
instead of performing symbol manipulation, it runs a
Boolean satisfiability algorithm on the formula. Nemesis,
an ATPG system using the new method, is quite practical:
it correctly tests or proves untestable every fault in the
ISCAS-85 (Brglez-Fujiwara) benchmark set [3].

II. THE BOOLEAN SATISFIABILITY METHOD

To generate a test pattern for a single fault, first extract
a formula that defines the set of test patterns that detect
the fault and then use a Boolean satisfiability algorithm to
satisfy the formula.

A. Extracting the Formula

A directed acyclic graph represents the topological de-
scription of the circuit. The nodes of the graph are circuit

0278-0070/92$03.00 © 1992 IEEE

LARRABEE: TEST PATTERN GENERATION

Fig. 1. A circuit and its associated DAG.

inputs, outputs, gates, and fan-out points; the edges of the
graph are circuit lines (wires); the sources of the graph
are circuit outputs; and the sinks of the graph are the cir-
cuit inputs. Every edge has an associated variable. Fig. 1
shows a circuit and its associated DAG.

Every node of the DAG is tagged with a formula that
represents the function performed by the gate or fan-out
point. For example, an inverter with an input X and an
output ¥ will be be tagged with the formula ¥ = X; an
AND gate with the inputs X and ¥ and the output Z will be
tagged with the formula Z = X + Y. Every node has a
formula that contains only variables for its incoming and
outgoing edges.

1) Translating Formulas into CNF: We will use con-
junctive normal form, or CNF (also known as product of
sums). Formulas written in CNF are easily manipulated
programmatically. To get the CNF formula for an AND
gate, we start with the formula

Z=X"Y.

Because the formula P = Q is logically equivalent to (P
- Q) + (Q — P), we transform our original equality into
Z-X-Y) (X-Y)=2).

Next, we transform all implications into disjunctions by
using the fact that P — Q is logically equivalent to P +
Q to get the formula

Z+X)-Z+Y)- X+Y+2).

This formula evaluates to 1 if and only if the values of the
variables are consistent with the truth table for an AND
gate. For comparison, the disjunctive normal form (sum
of products) version of the same formula is

X Y)+ XY D)+ (X -Y-2)
+ X Y- 7).

Fig. 2. The formulas for the basic gates.

In CNF formulas, one sum is called a clause. Clauses
with only one, two, or three elements are unary, binary,
or ternary clauses, respectively. A formula with no ter-
nary clauses is said to be in 2CNF (2-element conjunctive
normal form).

The CNF formulas for the basic gates are shown in Fig.
2, but the gates need not be basic to be included in this
scheme: With the introduction of new variables, the CNF
form of any formula can be produced in time and space
linear in the size of the original formula. For example,
the CNF formula for an AND gate with inputs X, Y, and
W and output Z, is

Z+X) - Z+Y)-Z+W)
X+ Y+WH+2).

The formula for an xor gate with inputs X and Y and out-
put Zis

X+Y+2) - X+Y+2)-X+Y+2)
- X+ Y+ 2Z).

2) Formulas for Unfaulted and Faulted Circuits: Be-
cause each gate and fan-out point is tagged with a formula
that must be independently satisfied, we can extract a
characteristic formula for any circuit output (or subcircuit
output) by starting at the output and walking the graph,
taking the conjunction of all of the formulas for the visited
nodes. Since the formula for every component must be
independently satisfiable, the conjunction of the formulas
must also be satisfiable. Fig. 3 shows a circuit with each
gate labeled by its characteristic formula. The formula for
the output of this circuit is

X+D)-X+E)-X+D+E)
-D+4 - D+B-D+A4+B)
-(C+E) (C+E).

We can represent a faulted version of an unfaulted cir-
cuit by making a copy of the circuit, renaming the vari-
ables, and inserting two new nodes that represent the pre-
sumed disrupted connection in the faulted circuit. That is,
if the circuit has the fault we want to test for, one value
will be generated at the fault site, but another value will
be forwarded on to the rest of the circuit. We tag the new
nodes with unary clauses that indicate the behavior of the
fault we are interested in. For example, Fig. 4 shows the

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 1, JANUARY 1992

A—
B —

Fig. 3. Combinational circuit with labeled gates.

A—_

B——

Fig. 4. Circuit of Fig. 2 with D stuck at 1.

faulted version of the circuit in Fig. 3. Because wire D is
stuck-at 1, we add the formula (D') to the node repre-
senting the faulted behavior at the fault site, and we add
the formula (D) to the node representing the correct be-
havior at the fault site.

Because the unfaulted and faulted circuits will have
identical behavior except at those nodes that are affected
by the fault, only the variables that are associated with
wires that lie on a path between the fault site and a circuit
output need to be renamed.

We can extract a formula for the faulted output in the
same way as we extracted a formula for the unfaulted cir-
cuit: by starting at the faulted output, walking the DAG,
and taking the conjunction of all encountered nodes of the
DAG. The formula for the faulted circuit of Fig. 4 is

X' +D) - X' +E)-X'+D +E)
(D) - (C+E) (C+E).

We need not include the clause (D) in the formula for the
faulted circuit because of the implied discontinuity at the
fault site.

To test for the given fault, we need only find a set of
inputs that cause the faulted output to differ from the un-
faulted output. We will have a formula for all possible
tests if we take the conjunction of the two extracted for-
mulas and add an additional formula for the xor of the
faulted and unfaulted output. Using BD to represent the
result of the final XoR, the formula resulting from the xor
of the output of the unfaulted circuit of Fig. 3 and the

faulted circuit of Fig. 4 is
X" +D")- X' +E)- X' +D +E)
(D) (C+E)-(C+E)
X+D)-X+E)-X+D+E)
D+ A-D+B - -(D+A4+B
X+ X'+ BD)-(X+X' + BD)
- X+ X' +BD)- (X+ X+ BD),

where the first line is contributed by the faulted circuit,
the second line is contributed by the unfaulted circuit, and
the third line is contributed by the final xor. Fig. 5 shows
the circuit form of the formula to be satisfied. There are
several clauses that appear in both the formulas for the
faulted circuit and the unfaulted circuit, but they need not
be repeated because AND is idempotent.

The extracted formula is equivalent to the formula that
would be produced by the Boolean difference method, in
the sense that they are both satisfiable or both unsatisfi-
able: every set of satisfiable bindings for the formula pro-
duced by the Boolean difference method is consistent with
a satisfying binding for the Boolean satisfiability method,
and every set of satisfiable bindings for our formula is a
superset of a satisfying binding for the formula produced
by the Boolean difference method. The formula extracted
by our system is not exactly the same as one that would
be produced by the Boolean difference method because
our formula has extra variables in it. These redundancies
will be helpful in finding a satisfying assignment for the
formula.

B. Satisfying the Formula

The problem of satisfying a CNF formula, SAT, is an
NP-complete problem [4]. We have transformed one
problem that in the worst case will take exponential time
in the number of its circuit inputs into another problem
that in the worst case will take exponential time in the
number of its variables. Fortunately, the class of formulas
generated by combinational circuits is an interesting sub-
class of all CNF formulas, and we can use this fact to try
to avoid the worst-case behavior of SAT. Many research-
ers have recognized that the average behavior of a SAT
algorithm can be improved dramatically if the set of for-
mulas to be solved fit a restricted profile [5], [15]. The
set of formulas produced by combinational circuits fits
such a restricted profile.

At least two thirds of the clauses generated for the
Boolean difference of a combinational circuit have only
two disjuncts (are in 2CNF). This is true because each
two-input unate gate contributes two binary (2CNF)
clauses and one ternary clause (the basic unate gates are
pictured in Fig. 2). Unate gates with more than two inputs
contribute more than two thirds binary clauses, and fan-
out points, buffers, and inverters contribute only binary
clauses. In practice we have found that 80% to 90% of

LARRABEE: TEST PATTERN GENERATION

BD

Fig. 5. The xoR of the faulted and unfaulted circuits must be 1.

the clauses are in 2CNF. The problem of satisfying a
2CNF formula, 2SAT, is satisfiable in time linear in the
number of clauses plus the number of variables [2]. We
may have an exponential number of 2SAT solutions, but
we can use information from the ternary clauses to guide
the iteration through the 2SAT assignments.

1) Using 28AT to Solve SAT: We use an algorithm
from the 1970’s for satisfying a 2CNF formula [2]. The
first step is to construct an implication graph. Each 2CNF
clause (X + Y) can be viewed as two implications: X —
Yand Y — X. The implication graph for a 2CNF formula
shows all of the constraints imposed by 2CNF clauses on
the logic values of the variables involved.

More formally, for each variable X occurring in the
2CNF clauses, there are two vertices in the graph, labeled

X and X. For every 2CNF clause (X + Y) there are two .

directed edges in the graph: one from X to Y and one from
Y to X. The edge represents the logical implication be-
tween the two literals. We can now bind logic values to
the variables in the graph. Any assignment is legal as long
as it does not cause a node labeled 1 (true) to precede (or
imply) a node labeled 0 (false).

Before we label the graph, we can simplify it by reduc-
ing each strongly connected component, a maximal set of
nodes in a graph such that every node in the set is reach-
able from every other node in the set, to a single node. If
any strongly connected component contains both a literal
and its negation, the formula is unsatisfiable (because each
strongly connected component represents a set of vari-
ables that are in an equivalence class). After each strongly
connected component is reduced to a single node, the
graph will not contain any cycles. Now we can find at
least one satisfying binding for the 2CNF portion for-
mula: First we visit the vertices in any topological order.
For each variable, if the negated variable appears before
the unnegated variable in the topological order, we bind
the variable to O (false); otherwise, we bind the variable
to 1 (true). We will discuss the details of iterating through
all 2SAT bindings in the next section.

As an example of how 2SAT works, consider the small
circuit in Fig. 6. Imagine that we wished to iterate through
all possible bindings to the variables 4, 4;, 4,, B, and C.

A——e

EeA ek B o0

A, A &A; B

_‘//

Fig. 6. A simple circuit and its implication graph.

I |

Fig. 7. The reduced implication graph.

The formula for the circuit is

A+A4) A+4A) A+ 4) A+ 4)
(@ +B) A +B) - (C+4)(C+B)
A, +B+0),

where the first two lines are the 2CNF portion of the for-
mula and the last line is the ternary portion of the formula.
The implication graph of the 2CNF portion of this for-
mula is shown in Fig. 6. The graph has two strongly con-
nected components: {4, A, A;, B} and its complement,
{A;, A, A;, B}. We replace these strongly connected
components with the unit nodes E; and E,, which results
in the graph shown in Fig. 7. The final graph clearly shows
that C implies C, and therefore C must be bound to 0. In
the circuit from which the formula was extracted, C is
equal to A + 4, so it is reassuring that the system can
determine that C must be bound to 0. Given the binding
of C, only one unbound node in the graph remains, and it
can assume either Boolean value and remain consistent
with the ternary clause. ‘

2) Iterating Through 2SAT Bindings: We have just de-
scribed a method for constructing a satisfying assignment
for the 2CNF portion of the formula by assigning values
to the literals so that no node bound to 1 has a directed
path to a node bound to 0. Clearly there are many such
assignments, but we want to construct a 2SAT assignment
that is consistent with the ternary clauses. We will do this
by defining an order for the 2SAT assignments and then
constructing each assignment only so far as it is consistent
with the ternary clauses.

We order the 2SAT assignments by ordering the vari-

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 1, JANUARY 1992

The loop invariant:

1. Any binding that precedes the current prefix falsifies the formula.

2. If dir = Backward, any complete binding that extends the current prefix falsifies the

formula.

3. If dir = Forward, the current prefix is consistent with the formula.

4. Any variables that are bound but are not part of the current prefix are implied by

the current prefix.
V « all Unbound; i « 0; dir « Forward;

loop
if dir = Forward then

while i # size(V) and VI[i} is bound do i — i + 1 end;
if i = size(V) then exit successfully end;

V[i-1] « 0;

Set direct implications of V[i-1];

ie—1+1
elsif dir = Backward then

if i = 0 then exit unsuccessfully end;

temp « V[i-1};

Undo direct implications of V[i-1];

V[i-1} < Unbound;
if temp = 0 then

Vi-1] < 15
Set direct implications of V[i-1]
else
Pe—i-1
end
endif

endloop

if no clause falsified then dir — Forward else dir — Backward end

Setting or undoing direct implications: we keep a count of how many times each vari-

able is set to 1 or set to 0; a variable with a count of 3 has been forced to 1 three

times and a variable with a count of -3 has been forced to 0 three times. A variable

is only bound when its count changes from 0 and is only unbound if its count goes

to 0.

Fig. 8. 2SAT iteration loop.

ables that appear in the 2CNF clauses. This defines a total
order on the 2SAT solutions: One total assignment pre-
cedes another if the n-bit binary number representing the
values of the variables (in the previously fixed order) pre-
cedes the n-bit binary number for the other assignment.
For partial assignments, we use lexicographic order with
unbound variables treated as less than 0. We can consider

the 2SAT solutions in either ascending or descending or-

der, but we will assume (without loss of generality) that
we consider them in descending order.

We start with V, the array of 2CNF variables (initially
unbound), i, which points to the first unbound variable in
the array (initially set to 0), and dir, which keeps track of
whether or not we are backtracking (initially set to For-
ward). We call the current prefix of V the sequence of
bound values V[0], V[1], - -+, V[i — 1]. All elements
of V greater than or equal to 0 and less than i are bound.
Our goal is either to find an assignment for the variables
in ¥ that is consistent with the ternary clauses or to prove
that no such binding exists. Fig. 8 shows a loop (with
loop invariants) that achieves this goal.

Figs. 9 through 11 show an example of 2SAT iteration.
In Fig. 9 we show an abbreviated version of a familiar

Fig. 9. Place a queen in every row of the board.

constraint problem: the N-queens problem. In this prob-
lem, we wish to place two queens on a board with two
squares on one side and three on the other such that nei-
ther queen attacks the other. We can translate this prob-
lem into CNF in the following manner:

Each of the six squares is associated with a variable 4,
B, C, D, E, or F that is bound to 1 if a queen is placed in
the square with the associated label and 0 if no queen is
placed in that square. W¢ can require that a queen be
placed in each row through two ternary placement clauses,
and we can prevent a queen from attacking another by
adding 13 binary artack clauses. For example, the attack
clause (4 + B) prevents queens from being simulta-
neously placed in squares A and B. The complete list of

LARRABEE: TEST PATTERN GENERATION

a 5 8 E ¢ °F

B E A C D F

Fig. 11. A variable order for the two-queen problem

clauses is
A+B+C)- D+E+F)

@A+B)-@A+C)-A+D) - A+E)
-B+C)-B+D)-B+E)-B+F
-(C+E)-(C+F)-D+E)
-D+F) - E+F).

Fig. 10 shows the implication graph generated from the

attack clauses.

From the implication graph we can see that variables B
and E each have five outgoing implications, and variables
A, C, D, and F each have four. Each of the six variables
appears once in the ternary (placement) clauses. We want
to order the variables so that the variables that place the
most constraints on other variables appear first. Since vari-
ables B and E have more outgoing edges, this means that
they must be assigned values before variables 4, C, D,
and F. The variable order B, E, A, C, D, F is acceptable.
The affect of variable order on the ease of formula satis-
fiability is further discussed in subsection III-C.

Having determined a variable order, Fig. 11 illustrates
an attempt to search for a legal binding by stepping
through the 2SAT bindings in descending order. The first
legal binding for the implication graph, 100000, cannot
be extended to satisfy the placement clauses because it
allows for the placement of only one queen. The second
legal binding, 010000, is similarly unsatisfactory. How-
ever, the third legal binding, 001001, satisfies the ternary
clauses, and successfully concludes our search.

3) Terminating the Search: We terminate the search
for a 2SAT binding that satisfies the entire formula in one
of three ways:

1) We find a satisfying binding.

2) We prove that no binding exists.

3) We exceed the amount of computational effort we
are willing to spend.

Though we can solve a 2SAT problem in linear time, there
may be an exponential number of solutions. In the ab-

sence of significant theoretical advances, there will al-
ways be instances of NP-complete problems that take
more time to complete than we want to wait; we would
rather generate tests for all but one of the faults of a circuit
in a small number of seconds than wait four hours and
still not know if we will be given a successful test in the
near future.

Practical considerations require that any implementa-
tion of our method stop searching for an answer after a
certain number of 2SAT sohitions have been unsuccess-
fully extended to a SAT solution. In the current imple-
mentation the number of unsuccessful 2SAT solutions we
will ‘tolerate is equal to the length of the variable array
mentioned in subsection II-B-2. This backtrack limit was
determined through experimentation and is not derived
from the theoretical behavior of the search. In subsection
III-C we will discuss modifications to the satisfier so that
instead of giving up when no solution is found after a
given number of tries, we reorder the variables using a
different metric and try again.

1II. MINIMIZING THE SEARCH TREE

The algorithm we have just described is complete: If
no test pattern for a fault exists, we will eventually prove
it; if a test pattern exists, we will eventually find it. How-
ever, we can speed up the satisfier tremendously by fig-
uring out how to quickly determine that some portions of
the search tree contain no solutions. Like structural search
ATPG systems, we can take advantage of topological in-
formation to avoid searching unprofitable sections of the
search tree: we believe that any heuristic that can be stated
in the structural search domain can be translated into a
modification of the formula to be satisfied.

In this section we will describe how we translate sev-
eral structural search heuristics into modifications to the
basic Nemesis system described in Section II. The effect
that these modifications have on the efficiency of the base
level system has been described in detail in a previous
publication [9], [10].

Each of the heuristics we will discuss is implemented
in our system by adding to or subtracting from the formula
to be satisfied. By adding or subtracting clauses we can
avoid portions of the search tree. When we subtract vari-
ables we are making the search tree shorter, and when we
add certain restrictive clauses we ignore branches of the
search tree. In either case, we must ensure that the change
preserves satisfiability.

A. Adding Clauses to the Formula

We can take the basic formula and add clauses that ex-
plicitly state information that the satisfier can eventually
derive, but perhaps only after a great deal of search. The
simplest example of such redundant information is the
value of the faulted line with the unfaulted circuit. For
example, the formula for the fault shown in Fig. 5 con-
tains the unary clause (D) (in English, the faulted value
of the line is 1). The satisfier can derive that the variable

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL.

D must take on the value O (for the xor of the faulted and
unfaulted circuits to be equal to 1), but we add that infor-
mation explicitly by adding the clause D to the formula.
Adding this kind of derivable information can speed up
the satisfier by an order of magnitude.

1) Nonlocal Implications: As noted by the designers
of the SOCRATES system, it is possible to explicitly de-
rive nonlocal implications by examining the reconvergent
fan-out in a circuit [17]. In Fig. 12, we see that if line B
has the value 1, line F has the value 1; conversely, if line
F has the value 0, line B has the value 0. SOCRATES
discovers this implication by performing a structural anal-
ysis of the circuit; we find it by analyzing the formula
representing the circuit.

Given the formula for an unfaulted circuit, we can list
all the nonlocal implications of a given variable assign-
ment by binding the variable and then noting the direct
implications that use a ternary clause. Any implication
that involves a ternary clause must come from reconver-
gent fan-out. For example, the complete formula for the
circuit in Fig. 12 is

F+D)y-F+E)-(F+D+E)
“(D+A)-(D+B)-(D+A+B)
D +A)-D+B)-D+A4+ B).

Binding B to 1 causes the binary clauses (D + B) and (E
+ B) to be promoted to the unary clauses (D) and (E).
When D and E are bound to 1, the ternary clause (F + D
+ E) is promoted to a unary clause, which caused F to
be bound to 1. The fact that a ternary clause was used to
derive the direct implication that B bound to 1 implies F
bound to 1 means that it is a nonlocal implication. By
adding the explicit clause (B + F) we ensure that any
time F is bound 0, B will also be bound to 0 without hav-
ing to do any case splitting.

We could add all the nonlocal implications for a circuit
to every formula that we try to satisfy, but we only add
the nonlocal implications if the satisfier fails on the orig-
inal formula. The process of finding the implications can
be time consuming, and we do not want to spend the time
when the formula is easy to solve without the added in-
formation.

The great majority of patterns can be generated without
nonlocal implications, but the few that could not be gen-
erated easily without nonlocal implications could not be
generated even when the satisfier was allowed to run 1000
times as long as it normally does. Nonlocal implications
are vital when it comes to processing difficult faults.

2) Active Clauses: When the D algorithm was intro-
duced, Roth concentrated on trying to get a discrepancy
to a circuit output [16]. We can modify our formula so
that the explicit need for a sensitized path can be used to
speed up the satisfier. But there is a difference between
the sensitized path of the D algorithm and a sensitized
path that we need for our formula: The D algorithm

11, NO. I, JANUARY 1992

Fig. 12. Nonlocal implications: Add B+ F).

searches for a solution by explicitly enumerating all pos-
sible combinations of sensitized paths, but we are only
speeding up our search by taking advantage of the exis-
tence of at least one sensitized path for any detectable
fault.

If a fault is detectable, there must be at least one sen-
sitized path from the fault site to a circuit output. There
may be more than one path, but we need find only one:
we will call this particular sensitized path the active path.
Each line that is a member of the active path is an active
line. Every active line must have a discrepancy, but since
there may be other sensitized paths, not all lines with dis-
crepancies are active lines.

To find an active path, we add clauses that describe
how we would go about finding such a path manually:
First, we know that the fault site is on the active path (if
one exists). As for the other lines, if a line is on an ac-
ceptable active path and it is an input to a single-output
gate, the output must also be on the active path; if it is an
input to a multiple-output gate, one of the outputs must
be on the active path. To put it formally, for each line that
lies between the fault and a circuit output we allocate a
variable (called the active variable for the line), and for
each gate that lies between the fault and a circuit output
we add several clauses (called the active clauses for that
gate). We will use the notation that if a line has the name
(variable) X, its active is Acty. For each single-output gate
with input X and output ¥ we add the clause (Acty + Acty)
(in English, if X is active, Y is active). For each multiple-
output gate with input X and outputs ¥ and Z, we add the
clause (Acty + Acty + Acty) (in English, if X is active,
either Y is active or Z is active). Figs. 13 and 14 show
examples of these clauses.

If we only added the clauses we have described so far,
we would find any path from the fault site to a circuit
output and call it the active path (whether or not it was
possible to sensitize it). We must also add clauses the en-
sure that the path is made up entirely of lines with dis-
crepancies. For each potentially active line X, we add the
formula (Acty + X + X') - (Acty + X + X’) (in English,
if X is active, the unfaulted value of X differs from the
faulted value of X). For example, for the circuit in Fig.
5 we allocate the variables Actp and Acty, and add the

LARRABEE: TEST PATTERN GENERATION

ns———
X

Y

Fig. 13. If X is active, Y must be active: (Acty + Acty).

X
—————
X
X2
Fig. 14. If X is active, either X, or X, must be active: (Acty + Acty, +
Acty,).

formula

(A—ct;+Actx)-(EFI;+D+D')-(HD+5+B')
c(Acty + X+ X') - (Acty + X + X')

to the basic formula we mentioned in Section II.

Adding the active implication clauses greatly increases
the efficiency of our system. Without the implication
clauses we abort on many of the faults. :

3) Requiring Noncontrolling Values: If a gate is on the
active path, we know that it must propagate the discrep-
ancy. This means that the gate inputs not on the active
path must take on certain noncontrolling values that will
allow the fault to be propagated. For example, if an AND
gate is on the critical path, none of its nonactive inputs
can take on the value O: if they did, the AND gate would
always have the output 0, and no discrepancy could be
propagated. On the other hand, a nonactive input to an
AND gate on the active path could have a discrepancy. In
this case, if the nonactive discrepancy is the same as the
active discrepancy, the fault is propagated (0/1 anp 0/1
is 0/1); if the discrepancy is the opposite of the active
discrepancy, the fault is not propagated (0 /1 aND 1/0 s
0/0). Fig. 15 shows two legal critical assignments for a
four-input AND gate (the active path is shown by a bold
line), and Fig. 16 shows illegal assignments for the same
gate.

We can come up with similar rules for all the basic
gates: Nonactive inputs to gates implementing monotonic
functions must either have a discrepancy identical to that
of the active input or have no discrepancy and assume a
noncontrolling vatue. For xor and XNOR gates on the ac-
tive path, we must require that their nonactive inputs have
no discrepancies (0/1 xor 1/0is 1 and 0/1 xor 0/1 is
0).

We can add clauses requiring noncontrolling values for
every gate between the fault site and a circuit output. For
example, the or gate in Fig. 4 is on the active path, and
its input E cannot carry a discrepancy. We could add the
clause (Actp + E) (in English, if D is active, E must be
0) to the formula to be satisfied.

1— 11—

1 1/0—

1 1/0 1 1/0
1/0 e— 1/ 0 e—

Fig. 15. Legal critical assignments.

11— 1 —

00— 0/1

1 0 1 0
1/ 0 weemem 1/0 wemm—

Fig. 16. An illegal critical assignment.

Explicitly requiring noncontrolling values for gates
propagating a discrepancy is of great value for the topo-
logical ATPG systems; in our case, the added clauses are
not as valuable. The added clauses not only add redundant
information, but the information they add is usually de-
rived by the satisfier in a few simple steps. Adding the
noncontrolling clauses is inexpensive, and they can never
retard the search for a solution, so we add the noncon-
trolling clauses to our base level system.

4) Determine Unique Sensitization Points: We can
build a preprocessor that identifies all of the unique sen-
sitization points for each possible fault site by generating
the active clauses for every gate in the circuit and deter-
mining the nonlocal implications of the active clauses. For
example, looking at Fig. 12 again, just as we generated
the nonlocal implication (B + F) from the formula for the
circuit, we can also generate (Actg + Actr). That is, we
can derive that if B is active, F must be active.

Many authors of structural search ATPG systems place
great importance on preprocessing the circuit structure to
derive the unique sensitization points (points of total re-
convergence) in the circuit [6], [17], but such a prepro-
cessing step is not necessary for us. In the process of find-
ing an active path, our satisfier will always find all the
unique sensitization points without explicitly searching for
them. We have never found a case where explicitly deriv-
ing the unique sensitization points improved the perfor-
mance of our system.

5) Removing Clauses from the Formula: We can re-
move a variable from the formula (along with all the
clauses containing the variable) if we are guaranteed that
removing the variable will not cause a satisfiable formula
to appear to be an unsatisfiable one (even if removing a
variable will remove some satisfying bindings from the
solution set for the original formula). We do not need to
find all satisfying bindings—we only need to find one.

We can avoid searching fan-out-free portions of the cir-
cuit by removing variables and clauses corresponding to
fan-out-free portions of the circuit. To explain our
method, we must first explain the determines relation.

We say the variable V determines variable W if an as-
signment of either 0 or 1 to ¥ will cause W to appear in
the formula only negated or only unnegated. In this case,
we may remove all clauses containing W from the formula

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 1, JANUARY 1992

and postpone the assignment of W until after the final as-
signment of ¥ has been made.

As an example, in the Boolean difference formula pre-
sented for the circuit in Fig. 5, E determines C but C does
not determine E. This is true because when E is bound to
either 0 or 1, C will appear only negated or only unne-
gated in the remaining clauses, but C can not be bound to
any value that will leave E appearing only negated or only
unnegated. In fact, every variable in the formula but BD
is determined by some other variable. Since the circuit
from which we produced the formula is completely fan-
out free, it is not surprising that a satisfying binding can
be found with no search.

A more interesting example appears in Fig. 17 (where
the triangle with input E and outputs E, and E, represents
a fan-out point). The characteristic formula for G would
normally consist of 13 clauses, but the removal of all
clauses containing variables 4, B, and C will leave only
eight clauses in the remaining formula because F deter-
mines A, and E determines B and C.

B. Modifying 2SAT Variable Order

We want to iterate through the 2SAT solutions in an
order that maximizes our chances of quickly discovering
a solution that can be extended to a satisfying assignment
for the entire CNF formula. In subsection II-B we ex-
plained how we use a metric to determine the order of
variable assignment. In fact, we do not use one metric,
we use three. Like others who produce ATPG systems
{13], we have noted that independent search strategies are
often effective on different classes of faults. To use the
terminology of Min and Rogers, search strategies that
have largely disjoint solution sets (with a given search or
backtrack limit) are called orthogonal search strategies.
By limiting the search with a given strategy and switching
to a new strategy when no perceivable progress is made
in a given period, we can increase our coverage.

As we explain the three strategies, we will use the fol-
lowing example: Given the SAT formula

A+B)-B+C)-A4+C)-UA+B+0),
Fig. 18 shows the implication graph for the 2SAT portion
of the formula. We will describe how the search for a

satisfying assignment for this formula would differ under
the three strategies. The three orderings are:

1) We order the variables from high to low by the num-
ber of other variables they directly force to 0 when
bound, and we then step through the 2SAT solutions
in descending order. That is, if we are not forced to
assign a given variable to 0, we will bind to 1. 4
and B each force two other variables to 0 when
bound, but C only forces one variable to 0, so A4 and
B must appear before C. Given the order 4, B, C,
Fig. 19 shows the search tree for our example. First
A will be bound to 1, which will force B to be bound
to 0. After we bind C to 1, the final binding is 4 =
1, B = 0, C = 1. By using this strategy, we are

A

{E+B)
(§+C):
(E+B+C)

Fig. 17. All clauses containing 4, B, or C can be removed from the for-
mula.

A B C
XX
A B C
~__—

Fig. 18. Implication graph for (4 + B) -+ B+ C) - (4 + C).

Fig. 19. The search tree for the first two strategies.

attempting to assert the strongest constraints at every
opportunity—whether the variable is bound to 1 or
to 0. The more constraints we trigger at the begin-
ning of a search, the fewer guesses we will have to
make because so much of our search will be di-
rected.

2) We use the same variable order as in strategy 1, but
we step through the solutions in ascending order.
That is, if we are not forced to assign a given vari-
able to 1, we will bind it to 0. The search tree is the
same as for strategy 1, except that instead of search-
ing the tree from right to left, we search it from left
to right. We did not find a solution in the high-or-
dered section of the tree, so we look in the low-
ordered section. For our example, first 4 will be
bound to 0, which will force C to be bound to 0.
Upon binding B to 0 we have a solution consistent
with our ternary clause: 4 = 0, B =0, C = 0.

3) Like strategy 1, we order the variables by the num-
ber of other variables that they force to 0, but in
contrast to strategy 1, we are interested only in the
number of other variables that are forced to O when

LARRABEE: TEST PATTERN GENERATION

Fig. 20. The search tree for the third strategy.

the variable is bound to 1. An additional difference
with strategy 1 is that this ordering is a lexico-
graphic ordering: variables that force an equal num-
ber of other variables through 2SAT implications are
ordered by their occurrence in the ternary clauses.
We step through the 2SAT solutions in descending
order. Fig. 20 shows the search tree for our exam-
ple. First we bind B to 1, which will force A and C
to be bound to 0, leaving us a solution consistent
with the ternary clause: 4 = 0, B = 1, C =0. By
using this strategy, we are also attempting to assert
the strongest possible constraints at every opportu-
nity, but this time we will trigger the most con-
straints only if the variables are bound to 1. Since
we are stepping through the bindings in descending
order, the constraints triggered by binding a vari-
able to 1 are more likely to come into play.

The strategies we have just described are only three of
the many possible search strategies we could have used.
In practice, we have found that the three strategies work
well in concert. Strategy 2 will often find a solution when
strategy 1 will not. Since they explore the same solution
space, but in opposite orders, it is easy to see that they
are orthogonal searching strategies. Strategy 3 builds a
markedly different tree from the first two only in cases
where the assumptions used to build the first tree was in-
valid. That is, strategy 1 may place a variable high in the
ordering because it causes many constraints when it is
bound to 0, but if the variable is only ever bound to 1,
those constraints do not direct the search. By switching to
an ordering that will strongly direct the search in the ex-
pected case, we can come up with a different solution set.

IV. RESULTS

Before we can present the measurements taken from
Nemesis we must provide further information about how
the features described in this paper fit into the system as
a whole as well as what kind of input we are using to
evaluate Nemesis’s performance. Nemesis is written inC
and runs on a Sun Sparcstation 1+. We used the ten sam-
ple circuits collected by Brglez and Fujiwara, and distrib-
uted at the 1985 ISCAS Conference, as input to Nemesis
[3]. We used the Tegas Description Language (TDL) ver-
sion of the ISCAS circuits.

Before test pattern generation begins, Nemesis trans-

13

lates the TDL into an internal form and produces a col-
lapsed fault list. After wire-list translation and fault col-
lapsing, two phases of test pattern generation follow:
random and algorithmic.

The first phase of test pattern generation is the random
phase: We use the logic word operations of the computer
to simulate 32 pseudorandom patterns against one target
fault. The simulator is modeled after the parallel-pattern,
single fault propagation (PPSFP) simulator reported by
Waicukaski et al. [18]. In this way we generate patterns
for the easily tested faults (generally 80% to 99% of the
total faults). When one complete PPSFP pass produces
fewer than a predetermined number of patterns (currently
2) the second phase, algorithmic pattern generation, be-
gins.

The algorithmic test pattern generation uses the Bool-
ean satisfiability method described in this article in con-
junction with all of the heuristics described except for the
heuristic that avoids search of fan-out-free subtrees. Dur-
ing the algorithmic pattern generation phase, each pattern
generated is simulated (using a simple single pattern, sin-
gle fault propagation simulator) so that any faults detected
by the new pattern may be removed from the fault list. If
the system backtracks too many times during the 2SAT
iteration, the fault is abandoned.

Table I shows the time spent for each individual circuit
during each of six phases: translation of the wire list into
internal form, generating and simulating semirandom test
patterns, extracting formulas, satisfying formulas, simu-
lating the patterns found by formula satisfaction, and
compaction of the resultant vectors. For all circuits but
the C6288, Nemesis spends most of its processing time
satisfying extracted formulas.

Table II shows the number of faults that require test
patterns, the number of faults after fault collapsing, the
number of faults covered by the semirandom test pattern
generation and simulation, the number of faults covered
by extracting and satisfying a formula, and the number of
faults proved redundant by extracting and falsifying a for-
mula.

Table III shows the number of patterns produced by
each phase and the percentage of faults covered, proved
redundant, or aborted by the complete system. Nemesis
was the second system to successfully produce tests for
or prove redundant every fault in the benchmark circuits.

V. CONCLUSIONS

The Boolean satisfiability method for generating test
patterns for single stuck-at faults in combinational cir-
cuits—extracting a formula for the test set of a fault and
then satisfying that formula—is general, flexible, and ef-
fective. By separating the solution from the exact form of
the problem, we can solve a larger class of problems than
can more restrictive systems. Not only can we translate
traditional structural heuristics into our domain; we can
also incorporate heuristics that would be difficult to im-
plement in a structural search system.

14 . IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. i1, NO. 1, JANUARY 1992

TABLE 1
NEMEsIS TIMING

Time in Seconds

Circuit Parse PPSFP Extract Satisfy SPSFP Compact Total
C0432 0.5 0.4 0.4 7.0 0.0 0.3 8.5
C0499 0.6 0.4 0.6 1.9 0.0 0.4 3.9
C0880 0.9 0.5 1.4 34.1 0.2 0.4 37.5
C1355 1.4 1.4 2.2 15.0 0.2 1.8 22.0
C1908 2.0 2.8 6.1 56.4 0.7 1.8 69.8
C2670 2.9 2.8 22.1 339.6 2.1 1.7 371.2
C3540 3.7 6.9 42.4 204.1 1.6 6.0 264.7
C5315 5.5 5.1 9.4 50.6 0.6 3.6 74.8
C6288 6.2 35.0 30.6 39.8 0.0 35.9 147.6
C7552 8.1 8.2 53.7 668.0 8.2 6.5 752.6
TABLE II

NEMESIs NUMBER OF FAULTS

Faults in Circuit Faults covered by

Proved
Circuit Uncollapsed Collapsed Random Algorithmic Redundant ~ Aborted

C0432 864 420 410 6 4 0
C0499 998 652 641 3 8 0
C0880 1660 765 727 38 0 0
C1355 2710 1444 1389 47 8 0
C1908 3816 1740 1643 88 9 0
C2670 5340 2516 2090 309 117 0
C3540 7080 3150 2931 90 129 0
C5315 10630 4909 4828 22 59 0
C6288 12576 7619 7585 0 34 0
C7552 15104 7194 6566 497 131 0
TABLE III
NEMESIS PATTERNS
Number of Patterns

Circuit Random Algorithmic Compacted

C0432 70 7 68

C0499 53 19 60

C0880 94 21 72

C1355 90 18 92

C1908 64 110 138

C2670 95 81 149

C3540 190 79 202

C5315 191 27 161

C6288 47 0 45

C7552 297 146 245

The Nemesis system using the Boolean satisfiability [2] B. Aspvall, M. Plass, and R. Tarjan, *‘A linear-time algorithm for

: _ testing the truth of certain quantified Boolean formulas,”” Inform.
method achieves total test coverage of the ISCAS-85 Process. Lett., vol. 8, pp. 121-123, 1979,

benchmark circuits: it was the second system (after SOC- [3]1 F. Brglez and H. Fujiwara, ‘A neutral netlist of 10 combinatorial
RATES) to correctly process all the faults. The structural benchmark circuits and a target translator in fortran,”” in Proc. Int.
search methods have had the benefit of more than a de- Symp. Cireuits Syst., June 1985.

. [4] S. A. Cook, ‘““The complexity of theorem proving procedures,”’ in
cade of program development and craftmanship; the Proc. Third Annual ACM Symp. Theory of Computing, 1971.

strength of our model leads us to believe that we will gain (51 M. Davis and H. Putman, *‘A computing procedure for quantification

foni : theory,”” J. Ass. Comput. Mach., vol. 7, pp. 201-215, 1960.
Slgmﬁcant performance improvements as the system ma- [6] H. Fujiwara and T. Shimono, *‘On the acceleration of test generation

tures. algorithms,’” IEEE Trans. Comput., vol. C-31, pp. 1137-1144, 1983.
[71 P. Goel, **An implicit enumeration algorithm to generate tests for
REFERENCES combinational logic circuits,”” IEEE Trans. Comput., vol. C-31, pp.
215-222, 1981.
[1] S. B. Akers, ‘‘On a theory of Boolean functions,” J. Soc. Ind. and [8) T. Larrabee, ‘‘Efficient generation of test patterns using Boolean dif-

Applied Math., vol. 7, 1959. ference,”” in Proc. Int. Test Conf., Aug. 1989. Also available as part

LARRABEE: TEST PATTERN GENERATION

9

{10]

1]
112]
[13]
[14]

{15]

[16]

L7}

of Digital Equipment Corporation Western Research Lab Research
Report WRL-90/3.

T. Larrabee, ‘‘A framework for evaluating test pattern generation
strategies,”” in Proc. Int. Conf. Computer Design, Oct. 1989. Also
available as part of Digital Equipment Corporation Western Research
Lab Research Report WRL-90/3.

T. Larrabee, ‘‘Efficient generation of test patterns using Boolean sa-
tisfiability,”> Ph.D. thesis, Stanford University, 1990. Also available
as Stanford Technical Report STAN-CS-90-1302 and as Digital
Equipment Corporation Western Research Lab Research Report WRL-
90/2.

E. I. McCluskey, Logic Design Principles. Englewood Cliffs, NJ:
Prentice-Hail, 1986.

A. Miczo, Digital Logic Testing and Simulation. New York: Harper
and Row, 1986.

H. B. Min and W. A. Rogers, ‘‘Search strategy switching: An alter-
native to increased backtracking,”’ in Proc. Int. Test Conf., 1989.
D. K. Pradhan, Fault-Tolerant Computing Theory and Techniques.
Englewood Cliffs, NJ: Prentice-Hall, 1986.

P. W. Jr. Purdom and C. A. Brown, ‘‘Evaluating search methods
analytically,”” in Proc. Nat. Conf. Ariifical Intelligence, 1982, pp.-
124-127.

J. P. Roth, “‘Diagnosis of automata failures: A calculus and a
method,”” IBM J. Res. Develop., vol. 10, pp. 278-291, 1966.

M. H. Schulz, E. Trischler, and T. M. Sarfert, ‘‘Socrates: A highly

15

efficient automatic test pattern generation system,”” IEEE Trans.
Computer-Aided Design, vol. 7, pp. 126-137, Jan. 1988.

[18] J. A. Waicukauski, E. B. Eichelberger, D. O. Forlenza, E. Lind-
bloom, and T. McCarthy, ‘‘Fault simulation for structured VLSI,”’
VLSI Design, vol. VI, pp. 20-32, 1985.

Tracy Larrabee (S’89-M’90) received the B.S.
degree in engineering from the California Institute
of Technoogy in 1979 and the M.S. and Ph.D.
degrees in computer science from Stanford Uni-
versity in 1987 and 1990, respectively.

Before entering graduate school she held full-
time positions in computer-aided design groups at
Silicon Systems and Helwett Packard Labs. While
working on her doctorate she held summer posi-
tions at the Xerox Palo Alto Research Center and
the Digital Equipment Corporation’s Systems Re-
search Center and Western Research Lab. From 1983 to 1988 she was the
recipient of a Digital Equipment Corporation Student Fellowship. Cur-
rently she is an Assistant Professor of Computer Engineering at the Uni-
versity of California, Santa Cruz. In 1991 she received a Presidential Young
Investigator award. Her research interests include theoretical computer sci-
ence, test pattern generation and simulation, and fault modeling.

