
Fast Static Compaction Algorithms for
Sequential Circuit Test Vectors

Michael S. Hsiao, Member, IEEE, Elizabeth M. Rudnick, Member, IEEE, and

Janak H. Patel, Fellow, IEEE

AbstractÐTwo fast algorithms for static test sequence compaction are proposed for sequential circuits. The algorithms are based on

the observation that test sequences traverse through a small set of states and some states are frequently revisited throughout the

application of a test set. Subsequences that start and end on the same states may be removed if necessary and if sufficient conditions

are met for them. Contrary to the previously proposed methods, where multitudes of fault simulations are required, the techniques

described in this paper require only two fault simulation passes and are applied to test sequences generated by various test

generators, resulting in significant compactions very quickly for circuits that have many revisited states.

Index TermsÐStatic test set compaction, test generation, recurrence subsequence, fault simulation.

æ

1 INTRODUCTION

TEST sequence compaction produces test sequences of
reduced lengths, which can greatly reduce the test

application time. Test application time directly impacts the
cost of testing and, thus, shorter test sequences are desired.
Two types of compaction techniques exist: dynamic and
static compaction. Dynamic test sequence compaction
performs compaction concurrently with the test generation
process and often requires modification of the test
generator. Static test sequence compaction is done in a
postprocessing step to test generation and is independent of
the test generation algorithm and process. If dynamic
compaction is used within the test generator, static
compaction can further reduce the test set size after the
test generation process is finished.

Several static compaction approaches for sequential
circuits have been proposed in the past [1], [2], [3]. The
static compaction techniques proposed in [1], [2] use
overlapping and reordering of test sequences obtained
from targeting individual faults to produce a minimal-
length test set. Three static compaction techniques have
been proposed by Pomeranz and Reddy [3] (which use
multiple fault simulation passes) and they have shown that
subsequences can often be removed from a test without
reducing the original fault coverage. The three compaction
techniques [3] are based on vector insertion, omission, or
selection. When a vector is to be omitted or swapped, the
fault simulator is invoked to make sure the fault coverage is
not affected by the alteration in the test sequence. These
techniques produce very compact test sets at the expense of

long execution times; however, they may not be practical

for very large circuits and/or large original test sets because

of the large number of fault simulations required.
Our approach to test set compaction is based on the

observation that test sequences traverse through a small set

of states, and some states are frequently revisited. Table 1

shows the number of vectors and states traversed by the

HITEC [4], [5] test sets for some ISCAS89 [6] benchmark

circuits. Since the numbers of states visited is small relative

to the total number of vectors for most circuits, it can be

concluded that many subsequences that start and end on

the same states exist within these test sets. Test sets

generated by other test generators also exhibit similar

phenomena. The subsequences that start and end on the

same state may be removed from a test set if necessary and

sufficient conditions on them are met. For circuits that have

few or no repeated states, such as s1423 and s5378 in this

table, this technique will not be applicable. The proposed

technique is fast because only two fault simulation passes

through the test set are necessary for compaction. Our static

compaction is applied to test sets generated by various test

generators; significant reductions in test set lengths have

been obtained. In addition, long sequences for large circuits

can be handled.
The remainder of the paper is organized as follows:

Section 2 gives some definitions of terms for this work.

Sections 3 and 4 describe two compaction algorithms in

detail. The compaction framework for a given test set is

explained in Section 5, experimental results are given in

Section 6, and Section 7 concludes the paper.

2 DEFINITIONS

Several definitions are given below in regard to subse-

quences in a test set T . The notation for a subsequence Tsub
is T �vi; vi�1; . . . ; vj�, where vi and vj are the ith and jth

vectors in the test set T , respectively.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 3, MARCH 1999 311

. M.S. Hsiao is with the Department of Electrical and Computer
Engineering, Rutgers University, Piscataway, NJ 08855.
E-mail: mhsiao@ece.rutgers.edu.

. E.M. Rudnick and J.H. Patel are with the Center for Reliable and High-
Performance Computing, Department of Electrical and Computer En-
gineering, University of Illinois, 1308 W. Main Street, Urbana, IL 61801.

Manuscript received 5 Aug. 1997.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 105462.

0018-9340/99/$10.00 ß 1999 IEEE

Definition 1. A propagation subsequence Tfprop for a

particular fault f is a subsequence T �vi; vi�1; . . . ; vj� such

that the fault effects of f , stored in the starting state at vector

vi, are propagated through all time frames within the

subsequence.

Definition 2. A detection subsequence Tfdet for a particular

fault f is a subsequence T �vi; vi�1; . . . ; vjÿ1; vj� such that f is

activated in time frame i, T �vi�1; . . . ; vjÿ1� is a propagation

subsequence for f and the fault f is detected in time frame j.

Both the propagation and detection subsequences for a

particular fault are identified approximately and pessimis-

tically in this work; some of the initial vectors of the

subsequence may not contribute to the actual propagation

of the fault, as shown in Fig. 1. In order to reduce the

complexity of obtaining propagation and detection sub-

sequences, backtracing of fault effects through the circuit is

avoided, resulting in a continuous sequence of time frames

in which fault effects are propagated to the flip-flops. These

continuous sequences are then taken as the propagation or

detection subsequence, even though these are pessimistic

measures.

Definition 3. A state-recurrence subsequence Trec is a

subsequence of vectors T �vi; vi�1; . . . ; vj� such that the fault-

free states reached at the end of vectors viÿ1 and vj are

identical.

Definition 4. An inert recurrence subsequence or, simply,

inert subsequence, Tinert is a state-recurrence subsequence

Trec�vi; vi�1; . . . ; vj� such that no additional faults are detected

within the subsequence Trec.

Definition 5. Given a fault-free state S, the error vector Ef for

a particular fault f is equal to S � Sf , where Sf is the

corresponding faulty state for the same time frame.

The error vector indicates which flip-flops carry fault

effects.

Definition 6. Given two identical fault-free states S, the error

vector Ef for a fault f covers another error vector E0f for the

same fault and state if Ef

S
E0f � Ef .

For example, if the fault-free state S is 10110, Sf is 11011

and S0f is 10011, error vectors Ef and E0f would be 01101

and 00101, respectively, and Ef covers E0f . However, E0f
does not cover Ef because a fault effect has propagated to

the second flip-flop only in Sf . In the case where Sf equals

S0f , the two error vectors are said to cover one another.

3 INERT SUBSEQUENCE REMOVAL

Many inert subsequences may exist within a test set and

many of them may be removable. Consider the test

sequence described in Table 2. An inert subsequence is

present: vectors v4 to v6. Given necessary boundary

conditions for the propagation and detection subsequences

of faults f4 and f8, which are detected by vector v7, this

subsequence Tinert�v4 . . . v6� may be removed from the test

set without affecting the fault coverage. These necessary

conditions will be discussed later in this section, but,

312 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 3, MARCH 1999

TABLE 1
Number of States Traversed by HITEC Test Sets

Vec: Test Set Size States: # States Traversed

Fig. 1. Pessimistic measure of detection subsequence.

intuitively, the conditions check whether the detections of
faults f4 and f8 depend on the inert subsequence.

The algorithm for removing inert subsequences is very
efficient. Theoretically, it can be implemented in a single
fault simulation pass at a high cost of storing faulty state
information. Instead of a single fault simulation pass, we
use a two-pass algorithm. A normal fault simulation pass
through the test set is made to collect the inert subsequences
and detection sequences for all faults within the test set.
Then, a second pass is made to obtain faulty state
information for the detected faults at the boundaries of
the inert subsequences only. Much storage can be saved by
skipping the faulty states that do not fall on the boundaries

of inert subsequences. Once the data is collected, each inert
subsequence is analyzed for possible removal. An inert
subsequence may be removed if any one of the following
four criteria are met.

Criterion 1. For an inert subsequence Tinert�vi; . . . ; vj�, if faulty
state Siÿ1

f at the end of time frame iÿ 1 and faulty state Sjf at
the end of time frame j are identical for every undetected fault

f which is activated at time frames iÿ 1 and j, Tinert can be
removed.

This is the trivial case, since the combined fault-free/
faulty states at time frames iÿ 1 and j are identical. With no
faults detected within the subsequence Tinert, Tinert can be
removed from the test set without affecting the fault
coverage.

Criterion 2. For an inert subsequence Tinert�vi; . . . ; vj�, if error

vector Ej
f at the end of time frame j covers Eiÿ1

f at the end of
time frame iÿ 1 for every activated fault f and the additional
fault effects propagated at time frame j do not lead to detection,

Tinert can be removed. Fig. 2 illustrates this case.

Detection subsequences for the additional fault effects at
the end of the inert subsequence are used to determine
whether these fault effects lead to a detection. When they do

HSIAO ET AL.: FAST STATIC COMPACTION ALGORITHMS FOR SEQUENTIAL CIRCUIT TEST VECTORS 313

TABLE 2
Example Test Sequence

Fig. 2. Cases of Criterion 2. (a) Additional fault-effects do not lead to detection. (b) Additional fault-effects lead to detections.

not lead to a detection (as shown in Fig. 2a), eliminating the
inert subsequence will not cause adverse effects. However,
if the additional fault effects do lead to a detection, the fault
would no longer be detected if the inert subsequence was
removed, as depicted in Fig. 2b. Thus, an inert subsequence
is not removed if the additional fault effects at time frame j
are part of the detection subsequences.

Criterion 3. For an inert subsequence Tinert�vi; . . . ; vj�, if error
vector Eiÿ1

f at the end of time frame iÿ 1 covers Ej
f at the end

of time frame j for every activated fault f , Tinert can be
removed if the additional fault effects propagated at time frame
iÿ 1 do not cause fault-masking in time frames starting at
frame j� 1, as shown in Fig. 3.

Because the additional fault effects at the beginning of
time frame i are not present at the end of time frame j, it is
intuitive that these fault effects cease to propagate at some
point within the inert subsequence. If the inert subsequence
is removed, the additional fault effects at the end of time
frame iÿ 1 will appear at the beginning of time frame j� 1.
Fig. 3 shows the scenario where the additional fault effect
may cause fault masking once the subsequence is removed.
From the figure, once the inert subsequence is removed, the
additional fault effects at the end of time frame iÿ 1 will
appear at the beginning of time frame j� 1. Since the
primary input vector PIj�1 may very well differ from PIi,
the differences in the primary inputs may cause fault
masking to occur, as depicted in Fig. 3b. As a result,
multiple fault effects may cancel each other.

Criterion 4. For an inert subsequence Tinert�vi; . . . ; vj�, if neither

error vectors Eiÿ1
f nor Ej

f cover the other, conditions imposed

on activated faults in both Criteria 2 and 3 need to be satisfied

in order for the inert subsequence Tinert to be removed.

With the four criteria given, the compaction algorithm

simply gathers all of the inert subsequences and checks for

any match with the removal criteria. The pseudocode for

this algorithm is described in Fig. 4. This is a fast inert-

subsequence removal algorithm because only the inert

subsequences are considered for compaction. A simple

extension of this algorithm is possible based on the

following observation: There may exist many state-recur-

rence subsequences that are unnecessary since the faults

detected within these subsequences can be detected outside

the subsequences. The next algorithm removes unnecessary

state-recurrence subsequences that are not known to be

inert using fault simulation with fault dropping.

314 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 3, MARCH 1999

Fig. 3. Cases of Criterion 3. (a) No masking when fault-effects applied in frame j + 1. (b) Fault masking occures when applied in time frame j + 1.

Fig. 4. Inert subsequence removal algorithm.

4 RECURRENCE SUBSEQUENCE REMOVAL

Many state-recurrence subsequences exist within the test

sets generated by both deterministic and simulation-based

test generators. Deterministic test generators backtrace until

all flip-flops have don't care (X) values for each target fault.

Thus, the initial vectors of each test sequence derived act as

synchronizing sequences for the circuit. Consequently,

many of these synchronized states are visited repeatedly in

the test set. In simulation-based test generators, states are

repeatedly visited as well because only forward processing

is involved and easy-to-reach states are often revisited.
In terms of fault detection properties, typically, an easy

fault in the circuit is detected multiple times by the test set.

An easy fault is defined as one which requires only a few

constraints on the primary inputs and flip-flop state in

order for detection; thus, a large number of combinations of

possible vector sequences may detect an easy fault. This

observation, together with the fact that many state-recur-
rence subsequences reside within the test set, allows the
possibility of reducing the test set size by removing state-
recurrence subsequences that only detect easy faults. In
order to identify multiple detections by the test set, fault
simulation without fault dropping is necessary, starting from
the occurrence of the first state-recurrence subsequence.

Table 3 gives an example of a test set that has state-
recurrence sequences Trec�v3v9� and Trec�v4 . . . v6�. Some
faults are detected within each subsequence; thus, neither
subsequence is inert. However, the three faults that are
detected by the state-recurrence subsequence Trec�v4 . . . v6�,
namely faults f2, f8, and f5, are easy faults and are detected
also by vectors v7 and v8. If the detection subsequences for
these three faults do not overlap with the state-recurrence
subsequence Trec�v4. . . v6�, and if the inert subsequence
removal criteria described in the previous section are met
at the boundaries, the state-recurrence subsequence may be
safely removed from the test set. The criteria for removing
state-recurrence subsequences can then be formally stated
as follows:

Criterion 5. For a recurrence subsequence Trec�vi; . . . ; vj�, Trec
can be removed if the following four conditions are met:

1. All faults detected within Trec have detection sub-
sequences that do not overlap with Trec.

2. For each fault active at the end of time frame j, if error
vector Ej

f at the end of time frame j covers error vector
Eiÿ1
f at the end of time frame iÿ 1, the additional fault

effects propagated at time frame j do not lead to
detection.

3. For each fault active at the end of time frame iÿ 1, if
error vector Eiÿ1

f at the end of time frame iÿ 1 covers
error vector Ej

f at the end of time frame j, the
additional fault effects propagated at time frame iÿ 1

HSIAO ET AL.: FAST STATIC COMPACTION ALGORITHMS FOR SEQUENTIAL CIRCUIT TEST VECTORS 315

TABLE 3
Test Sequence with State-Recurrence Subsequence

T �v3; . . . ; v9� and T �v4; . . . ; v6� are two state-recurrence subsequences.

Fig. 5. Recurrence subsequence removal. (a) Test sequence before removal of any state-recurrence subsequence. (b) Test sequence after removal
of first state-recurrence subsequence.

do not cause fault-masking in time frames starting at
frame j� 1.

4. For each fault active at the end of time frames iÿ 1 and
j, if neither error vector Eiÿ1

f nor error vector Ej
f

covers the other, conditions imposed on activated faults
in items 2 and 3 above are satisfied.

Conditions 2, 3, and 4 are not strict necessary conditions,
since faults which violate these conditions may be detected
multiple times.

An example of removal of state-recurrence subsequences
is illustrated in Fig. 5. In Fig. 5a, all faults detected within
the state-recurrence subsequence Trec1

, faults f1, f7, and f9,
have additional detection subsequences that do not overlap
with Trec1

itself, so Trec1
can safely be removed from the test

set if the criteria for faults active at the beginning and end of
the sequence are met. After the removal of Trec1

, all three
faults f1, f7, and f9 are still detected in the compacted test
set, shown in Fig. 5b. Now, if Trec2

were to be removed as
well, both f3 and f7 also need to have detection sub-
sequences outside of Trec2

. However, in this case, f3 is the
only fault within Trec2

which has a detection subsequence
outside of Trec2

, since the other detection subsequence of f7

has already been removed. Therefore, Trec2
may not be

removed from the test set.
Again, a single pass of fault simulation is sufficient to

carry out the algorithm. However, two passes are used here,
again in order to save storage costs. The pseudocode for
recurrence-subsequence removal is shown in Fig. 6.

Compaction using the inert-subsequence removal of
Section 3 requires inert subsequences to be present in the
test set for the algorithm to be effective. Recurrence-
subsequence removal, on the other hand, attempts to
compact the test sets across several inert subsequences in
a state-recurrence subsequence if the faults inside the state-
recurrence subsequence can be detected elsewhere. Other
differences exist between the two algorithms. Inert-subse-
quence removal compacts the test set in a local fashion: the

compaction proceeds from the locally inert subsequences.
Recurrence-subsequence removal, on the contrary, com-
pacts the test set in a global manner: The compaction starts
with the globally longest state-recurrence subsequence.

The cost of fault simulation without fault dropping may
be large in larger circuits. To handle such circuits, many
faults may be dropped by the initial vectors in the test set;
thus, fault simulation without fault dropping is only
performed for the remainder of the faults, making the
process less expensive.

5 COMPACTION FRAMEWORK

Application of the inert-subsequence and recurrence-sub-
sequence removal algorithms involves the selection of a set
of inert and state-recurrence subsequences. Optimal selec-
tion is similar to the set covering problem, which is NP-
complete in complexity. Let us consider the test set shown
in Fig. 7, with the inert subsequences illustrated. Determin-
ing the optimal selection of subsequences to remove is
nontrivial; a greedy algorithm is chosen to accomplish this
task since it has been shown to give a near-optimal solution
to the set covering problem in polynomial time [7].
Although our greedy algorithm only achieves near-optimal
selection of subsequences for removal, it will be shown in
the experimental results section that significant compac-
tions are still achieved.

Each inert subsequence Tinerti in Fig. 7 has to be
examined for the boundary criteria for removal. In the case
of Tinert1 and Tinert2 , they both start from the same vector but
end at different vectors. If both subsequences satisfy the
criteria for inert-subsequence removal, Tinert2 is preferable
for removal, unless a combination of Tinert1 and other inert
subsequence(s) results in a more compact test set. Removal
of Tinert1 eliminates the possibility of removing Tinert3 since
Tinert3 would no longer exist.

To facilitate the greedy algorithm, a single fault simula-
tion pass is used in the original test set to identify each inert
subsequence. If two inert subsequences begin at the same
time frame, the longer subsequence is examined first for
possible removal. This process is continued throughout the
test set. In this example, if the subsequences Tinert1 , Tinert3 ,
Tinert4 , Tinert6 , and Tinert8 satisfy the removal criteria, after the
greedy algorithm, Tinert1 , Tinert4 , and Tinert8 will be removed
by the selection process.

Removal of recurrence subsequences is performed in a
similar manner, except that the examination of removal
eligibility for recurrence subsequences starts from the
longest recurrence subsequence in the test set.

316 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 3, MARCH 1999

Fig. 6. Recurrence subsequence removal algorithm.

Fig. 7. Selection of susequences for removal.

6 EXPERIMENTAL RESULTS

The static test set compaction algorithms were implemented

in C++; various test sets generated for ISCAS89 sequential

benchmark circuits [6] and several synthesized circuits [10]

were used to evaluate the effectiveness of the algorithms.

No scan is inserted in any of the benchmark circuits. All

compactions were evaluated on an HP 9000 J200 with 256

MB RAM. Test sets generated by four test generators were

used for evaluating the effectiveness of the compaction

algorithms: HITEC [4], [5], GATEST [8], [9], DIGATE [10],

and STRATEGATE [11]. HITEC is a deterministic test

generator for sequential circuits, while GATEST, DIGATE,

and STRATEGATE are all based on genetic algorithms.

Inert-subsequence, recurrence-subsequence, and combined

inert/recurrence subsequence removal algorithms were

applied to the test sets. Since inert and recurrence-

subsequence removal algorithms compact the test sets from

different perspectives (local versus global, as described in

Section 4), the corresponding results will differ. It would be

interesting, therefore, to put the two algorithms together.

Inert-subsequence removal followed by recurrence-subse-

quence removal is the combined approach performed for all

the test sets.

In the actual implementation, the tests for criteria 3, 4,
and 5 are computationally costly to implement in their
entirety. In particular, parts of criteria 3, 4, and 5 require
checking for fault masking. In our implementation of these
two criteria, it is assumed that fault masking will not occur,
since it has an extremely low probability. As a result, some
faults detected by the original test sets may not be detected
by the compacted test sets. Compaction results are shown in
Tables 4, 5, 6, and 7 for test sets generated by each of the
four test generators. Results for inert, recurrence, and
combined inert/recurrence subsequence removal (ISR,
RSR, CSR, respectively) are shown in all tables. The total
number of collapsed faults for each circuit is shown only in
Table 4. Fault coverage is defined as the percentage of faults
detected. The fault coverages and lengths of the original test
sets are shown, followed by the fault coverages, test set
lengths, percent reduction in test set length after compac-
tion, and execution times of compaction for each of the four
test generators. A dash (-) in an entry indicates that no state-
recurrence subsequences are present within the original test
sets; thus, the compaction algorithms will not be applicable.

The results for HITEC test sets are first discussed. Little
or no reduction in test set size was achieved for am2910 and
mult16 because very few state-recurrence subsequences
exist in the original test sets. For s1423, s5378, pcont2, and

HSIAO ET AL.: FAST STATIC COMPACTION ALGORITHMS FOR SEQUENTIAL CIRCUIT TEST VECTORS 317

TABLE 4
Compation Results for HITEC Test Sets

FC: Fault cover in % Vec: Test set length % R: Percentage of test set length reduced
Time: Execution time in seconds on HP 9000 J200 Greatest reductions highlighted in bold

piir8o, no state-recurrence subsequences are present and,
therefore, the compaction algorithms are not applicable. For
the remaining circuits, significant reductions in test set sizes
were obtained. The reductions were greater for the
recurrence-subsequence removal algorithm than for the
inert-subsequence removal algorithm in most circuits. For
s382, s400, s444, s1488, s1494, and s35932, compaction using
inert-subsequence removal achieved only 3 percent to 9
percent reductions, while 30 percent to 60 percent reduc-
tions were obtained using the recurrence-subsequence
removal algorithm. For s298 and s526, recurrence-subse-
quence removal obtained less reduction than inert-subse-
quence removal, with reductions dropping from 11 percent
to 7 percent and 20 percent to 10 percent, respectively. The
execution times for recurrence-subsequence removal are
generally longer than those for inert-subsequence removal
due to fault simulation without fault dropping. For most
HITEC test sets, either inert or recurrence subsequence
removal dominates the compaction and the combined
approach usually results in a test set reduction equal to
the greater of the two obtained individually. For some
circuits, including s400, s820, and s832, the combined
approach results in better compaction. For many circuits,
the execution times for the combined approach are smaller
when compared with the time required for recurrence-

subsequence removal alone because inert-subsequence

removal in the first stage of the combined approach reduces

the original test set significantly before the more costly

recurrence-subsequence removal algorithm is applied, thus

saving much computation. For several circuits, recurrence-

subsequence removal provides better results than the

combined approach. This is due to the fact that after

removal of some inert subsequences in the first stage, the

recurrence-subsequence removal algorithm may become

ineffective in the combined approach. In other words, the

crucial vectors that can aid recurrence-subsequence re-

moval are eliminated in the first stage. Notice that, in a few

cases, a very slight drop or increase in fault coverages (one

or two faults) result after compaction. This is due to fault

masking after removal of the inert subsequences, which is

assumed not to occur in our implementation of Criterion 3.
The compaction results for GATEST test sets shown in

Table 5 display trends similar to the HITEC compaction

results. However, GATEST was targeted at generating

compact test sets and, because GATEST test sets are much

more compact than HITEC test sets to begin with, less

compaction is obtained. Again, either inert or recurrence-

subsequence removal dominates the compaction for most

test sets. The circuits for which the combined approach

318 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 3, MARCH 1999

TABLE 5
Compaction Results for GATEST Test Sets

FC: Fault Coverage in % Vec: test set length % R: Percentage of test set length reduced
Time: Execution time in seconds on HP 9000 J200 Greatest reductions highlighted in bold

produces the greatest compaction are s832, s1238, s1488,
am2910, div16, and pcont2.

DIGATE aims to produce test sets that achieve high fault
coverages. The DIGATE test sets are thus longer than
GATEST test sets but are comparable with HITEC test sets
when similar fault coverages are obtained. Significant
reductions in DIGATE test sets are obtained using all three
algorithms for most circuits, as shown in Table 6. The
reason for greater reductions in DIGATE test sets is the
existence of more state-recurrence and inert subsequences
within the original test sets, leaving more room in the
original test set for compaction. The reductions in test set
sizes after combined inert/recurrence subsequence removal
are greater than either algorithm alone for many of the
circuits. Fig. 8 illustrates the percentage reduction in
DIGATE test set size by the three algorithms for 10
benchmark circuits. For s1238, inert-subsequence removal
achieves more compaction than recurrence-subsequence
removal; however, the combined inert/recurrence subse-
quence removal does the best. For s35932, compaction by
recurrence-subsequence removal achieves the greatest re-
duction. For the remaining circuits, recurrence-subsequence
removal is more effective than inert-subsequence removal,
and the combined approach achieves even better results. It

should be noted that the execution time for the combined
approach is lower than the execution time for the recur-
rence-subsequence removal alone.

STRATEGATE obtains more compact test sets than
DIGATE and HITEC for most circuits. The results are
shown in Table 7. Significant reductions in test set sizes are
obtained for most circuits, even when the original test set
sizes are already quite compact to start with. One plausible
reason for this effect could be that STRATEGATE relies on
dynamic state traversal, which will inevitably introduce
more recurrence subsequences than other test generators.
More than 40 percent reductions were observed for many
circuits.

When comparing the results of the four test sets, one has
to be aware that the fault coverages obtained are quite
different. For example, for the test sets of s526, the fault
coverages obtained by HITEC, GATEST, DIGATE, and
STRATEGATE are 65.1 percent, 76.2 percent, 80.4 percent,
and 81.8 percent, respectively; therefore, the absolute
numbers of original and compacted test vectors will differ,
making it hard to compare. For the test sets for which
comparable fault coverages are obtained, such as the test
sets of s298, s344, s641, and s713, the compaction results
depend on the nature of the original test sets (i.e., the length

HSIAO ET AL.: FAST STATIC COMPACTION ALGORITHMS FOR SEQUENTIAL CIRCUIT TEST VECTORS 319

TABLE 6
Compaction Results for DIGATE Test Sets

FC: Fault Coverage in % Vec: test set length % R: Percentage of test set length reduced
Time: Execution time in seconds on HP 9000 J200 Greatest reductions highlighted in bold

of the original test sets and the number of states repeated,
etc.). For instance, the HITEC test set for s713 was reduced
from 173 vectors to 142 vectors (17.9 percent reduction), the
GATEST test set was reduced from 125 vectors to 97 vectors
(22.4 percent reduction), the DIGATE test set was reduced
from 166 vectors to 140 vectors (15.7 percent reduction), and
the STRATEGATE test set was reduced from 176 vectors to
141 vectors (19.9 percent reduction). This original test set
dependency phenomenon was also observed in [3].

How do our compaction results compare with other
static and dynamic compaction algorithms? Two issues
need to be addressed here. First, the fault coverages
obtained by static and dynamic compaction techniques are
different and, second, the execution times needed are also
different. Table 8 compares our results with the static
compaction technique proposed in [3] and the dynamic
compaction technique proposed in [12] for the HITEC test
sets. Fault coverage, test set size, and time for compaction
are shown for each technique after completion of the
compaction. Execution times were not reported in [3].
Notice that the fault coverages resulting from compaction
differ among the three techniques. The static compaction
technique proposed in [3] produces very compact test sets
for a few circuits, however, at the expense of long execution
times performing multiple fault simulations; due to long
execution times, results for large circuits were not reported.
The execution times for our approach take a few seconds for
the same circuits, although less compact test sets may result.
When compared with the results obtained by dynamic
compaction proposed in [12], the test sets obtained by [12]
are more compact for all circuits. The execution times, on
the other hand, are orders of magnitude higher for most

circuits, although the compaction often results in an
equivalent reduction in the time required for test genera-
tion. For example, in s526, the time taken by [12] is 35.3
seconds, while only 1.9 seconds are needed in our
approach. Similar results were observed in the other
circuits. However, in the circuit s35932, the dynamic
compaction time is shorter. The extra computation costs in
our approach are due to fault simulation without fault
dropping. This cost can be reduced by dropping many
faults early in the test set during RSR, thus making fault
simulation without fault dropping less expensive. Finally,
our algorithms often reduced test set sizes by more than 40
percent and they can be applied to functional test sets not
generated by automatic test generators.

Our techniques can also be applied to partial-scanned
circuits. Specifically, addition of scan will increase the
effectiveness of the proposed techniques, since the state
space for the scanned circuit is dramatically decreased due
to fewer flip-flops and the likelihood of repeated states will
then be increased.

7 CONCLUSIONS

Very fast static compaction algorithms have been presented.
Our technique is deterministic, testing for specific condi-
tions. Previously proposed trial and retrial-based ap-
proaches could take many hours for static compaction for
even small test sets and small circuits; only a few seconds or
minutes are needed by our compaction techniques and
large test sets and circuits can be practically handled. Inert
and recurrence subsequence removal techniques are based
on the observation that test sets traverse through many

320 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 3, MARCH 1999

Fig. 8. Percentage reduction for DIGATE test sets.

similar states, and compaction is based on eliminating

candidate state-recurrence and inert subsequences inside the

test sets. Significant reductions in test set sizes have been

obtained for HITEC [4], [5], DIGATE [10], and STRATE-

GATE [11] test sets in small execution times; moderate

reductions have been obtained for GATEST [8], [9] test sets,

which are more compact than the HITEC and DIGATE test

sets.

ACKNOWLEDGMENTS

This research was conducted at the University of Illinois

and was supported in part by the Semiconductor Research

Coporation under contract SRC 96-DP-109, in part by

DARPA under contract DABT63-95-C-0069, and by Hew-

lett-Packard under an equipment grant.

REFERENCES

[1] T.M. Niermann, R.K. Roy, J.H. Patel, and J.A. Abraham, ªTest
Compaction for Sequential Circuits,º IEEE Trans. Computer-Aided
Design, vol. 11, no. 2, pp. 260-267, Feb. 1992.

[2] B. So, ªTime-Efficient Automatic Test Pattern Generation
System,º PhD thesis, Electrical Eng. Dept., Univ. of Wisconsin at
Madison, 1994.

[3] I. Pomeranz and S.M. Reddy, ªOn Static Compaction of Test
Sequences for Synchronous Sequential Circuits,º Proc. Design
Automation Conf., pp. 215-220, June 1996.

[4] T.M. Niermann and J.H. Patel, ªHITEC: A Test Generation
Package for Sequential Circuits,º Proc. European Conf. Design
Automation (EDAC), pp. 214-218, 1991.

[5] T.M. Niermann and J.H. Patel, ªMethod for Automatically
Generating Test Vectors for Digital Integrated Circuits,º U.S.
Patent No. 5,377,197, Dec. 1994.

[6] F. Brglez, D. Bryan, and K. Kozminski, ªCombinational Profiles of
Sequential Benchmark Circuits,º Proc. Int'l Symp. Circuits and
Systems, pp. 1,929-1,934, 1989

[7] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms. Cambridge, Mass.: The MIT Press, 1990.

[8] E.M. Rudnick, J.H. Patel, G.S. Greenstein, and T.M. Niermann, ªA
Genetic Algorithm Framework for Test Generation,º IEEE Trans.
Computer-Aided Design, vol. 16, no. 9, pp. 1,034-1,044, Sept. 1997.

[9] E.M. Rudnick, ªSimulation-Based Techniques for Sequential
Circuit Testing,º PhD dissertation, Dept. of Electrical and
Computer Eng., Technical Report CRHC-94-14/UILU-ENG-94-
2229, Univ. of Illinois, Aug. 1994.

[10] M.S. Hsiao, E.M. Rudnick, and J.H. Patel, ªAutomatic Test
Generation Using Genetically-Engineered Distinguishing Se-
quences,º Proc. VLSI Test Symp., pp. 216-223, 1996.

[11] M.S. Hsiao, E.M. Rudnick, and J.H. Patel, ªSequential Circuit Test
Generation Using Dynamic State Traversal,º Proc. European Design
and Test Conf., pp. 22-28, 1997.

[12] E.M. Rudnick and J.H. Patel, ªSimulation-Based Techniques for
Dynamic Test Sequence Compaction,º Proc. Int'l Conf. Computer-
Aided Design, pp. 67-73, 1996.

HSIAO ET AL.: FAST STATIC COMPACTION ALGORITHMS FOR SEQUENTIAL CIRCUIT TEST VECTORS 321

TABLE 7
Compaction Results for STRATEGATE Test Sets

FC: Fault Cover in % Vec: test set length % R: Percentage of test set length reduced
T: Execution time in seconds on HP 9000 J200 Greatest reductions highlighted in bold

Michael S. Hsiao received the BS degree in
computer engineering from the University of
Illinois at Urbana-Champaign in 1992, and the
MS and PhD degrees in electrical engineering in
1993 and 1997, respectively, from the same
university. During the academic year 1992, he
was a teaching assistant in the Department of
Electrical and Computer Engineering at the
University of Illinois. Between 1993 and 1997,
he was a research assistant at the Center for

Reliable and High-Performance Computing, University of Illinois. He was
a visiting scientist at NEC USA in Princeton, New Jersey, during the
summer of 1997. He is currently with Rutgers, the State University of
New Jersey, where he is an assistant professor in the Department of
Electrical and Computer Engineering. His current research focuses on
VLSI testing, design for testability, design verification and diagnosis,
power estimation, low power design, and computer architecture. He is a
member of the IEEE.

Elizabeth M. Rudnick received the BS degree
in chemical engineering and the MS and PhD
degrees in electrical engineering from the
University of Illinois at Urbana-Champaign in
1983, 1990, and 1994, respectively. She has
worked at Motorola, Sunrise Test Systems, and
Advanced Micro Devices in the areas of design
verification, test generation, electronic design
automation, and yield enhancement. She is
currently an assistant professor in the Depart-

ment of Electrical and Computer Engineering and a research assistant
professor in the Coordinated Science Laboratory at the University of
Illinois. Her research interests include test generation, defect diagnosis,
design verification, and design for testability. She is a member of the
IEEE.

Janak H. Patel received the BSc degree in
physics from Gujarat University, India. He also
received the BTech degree from the Indian
Institute of Technology, Madras, India, and MS
and PhD degrees from Stanford University,
Stanford, California, all in electrical engineering.
He is with the University of Illinois at Urbana-
Champaign, where he is currently a co-director
of the Center for Reliable and High-Performance
Computing and a professor of electrical and

computer engineering and computer science and a research professor
with the Coordinated Science Laboratory. He is a co-founder of Sunrise
Test Systems, an ATG and testability software company. He has also
provided consulting and tutorial services to the industry on VLSI design
and test. He is currently engaged in teaching, research, and consulting
in the areas of automatic test generation, design for testability, fault
simulation, and diagnosis. He is a fellow of the IEEE.

322 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 3, MARCH 1999

TABLE 8
Comparing Various Compaction Techniques on HITEC Test Sets

FC: Fault coverage after compaction % R: Percent reduction from original test set size
Time: Execution time during compaction, measured in seconds on HP 9000 J200
More than 40 percent reductions in test set sizes are highlighted in bold

