
Procedures for Static Compaction of Test
Sequences for Synchronous Sequential Circuits

Irith Pomeranz, Fellow, IEEE, and Sudhakar M. Reddy, Fellow, IEEE

AbstractÐWe propose three static compaction techniques for test sequences of synchronous sequential circuits. We apply the

proposed techniques to test sequences generated for benchmark circuits by various test generation procedures. The results show that

the test sequences generated by all the test generation procedures considered can be significantly compacted. The compacted

sequences thus have shorter test application times and smaller memory requirements. As a by-product, the fault coverage is

sometimes increased as well. Additionally, the ability to significantly reduce the length of the test sequences indicates that it may be

possible to reduce test generation time if superfluous input vectors are not generated.

Index TermsÐStatic test compaction, synchronous sequential circuits, test application time.

æ

1 INTRODUCTION

TEST compaction for synchronous sequential circuits is
the process of reducing the length of a test sequence (or

the total length of a set of test sequences) for the circuit. Test
compaction is important for reducing the test application
time and the volume of test data. Test compaction
procedures can be classified into two categories. Dynamic
compaction procedures incorporate into the test generation
procedure heuristics aimed at reducing the test length.
Thus, they attempt to avoid the generation of superfluous
test vectors. Static compaction procedures perform test
compaction as a postprocessing step, independent of the
test generation process. Static compaction has two useful
features. 1) Unlike dynamic compaction, static compaction
does not require any modifications to the test generation
procedure. 2) Since dynamic compaction is based on
heuristics and is not guaranteed to achieve the minimum
test length, static compaction is useful, even after dynamic
compaction is applied during test generation, to further
reduce the length of the test sequence.

Prior to the work reported here, compaction of test

sequences for synchronous sequential circuits was consid-

ered in [1], [2], [3]. The static compaction procedures in [1]

and [2] start from sets of test sequences produced by

generating a separate test sequence for each fault or subset

of faults. They use overlapping and reordering of the

individual test sequences to produce a single test sequence

of minimal length. The procedure of [3] is a dynamic

compaction procedure. In this work, we present three static

compaction procedures applicable to the case where a

single test sequence is given. The test sequence can be

generated directly by test generation procedures, such as

[3], [4], [5], [6], or by using the procedures of [1] or [2] to
combine individual test sequences into a single sequence.

The effectiveness of the proposed static compaction
procedures on benchmark circuits is compared to identify
the most effective static compaction procedure among the
three procedures investigated in this work. The extent of
test compaction possible for deterministic test sequences
indicates that test pattern generators spend a significant
amount of time generating test vectors that are not
necessary. The compacted test sequences provide a target
for more efficient deterministic test generators.

In trying to compact a given test sequence, we face the
following problem that does not exist when performing
static test compaction for combinational circuits: Consider a
test sequence T � �t0t1 . . . tLÿ1�, where ti is the input vector
applied at time unit ui. If we remove or modify a vector ti,
then every fault detected by T at or after time unit ui may
potentially be left undetected. This is because fault
detection requires a sequence of test vectors that may be
disturbed when ti is removed or modified. As a result, after
changing the test sequence, we perform fault simulation to
ensure that the change has not reduced the fault coverage. It
is interesting to note that, by modifying the sequence,
additional faults may be detected that were not detected by
the original sequence. Thus, modification of a test sequence
may serve not only to reduce its length, but also to increase
its fault coverage. To capture these effects of reducing/
increasing the fault coverage, fault simulation must be
carried out. Thus, all three compaction procedures pro-
posed here require large numbers of fault simulations.
However, we believe that the gain in test length reduction
and the potential increase in fault coverage justify the
investment in additional fault simulation time. Further-
more, the compaction achieved in the work presented here
motivated the development of more time-efficient static
compaction procedures, presented in [7], [8], [9], [10], [11],
[12], [13]. It could also lead to methods to develop more
efficient test generation procedures for sequential circuits.

The paper is organized as follows: Section 2 contains
definitions and notation used throughout this work. In

596 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 6, JUNE 2000

. The authors are with the Electrical and Computer Engineering Depart-
ment, University of Iowa, Iowa City, IA 52242.
E-mail: {irith, reddy}@eng.uiowa.edu.

Manuscript received 3 Feb. 1997; revised 27 Apr. 1999; accepted 17 Apr.
2000.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 103741.

0018-9340/00/$10.00 ß 2000 IEEE

Section 3, we present a compaction procedure based on an
insertion operation that duplicates subsequences of the test
sequence and inserts them into the test sequence at specific
positions. In Section 4, we present a compaction procedure
based on omission of vectors. In Section 5, we present a
compaction procedure based on selection of a minimal
subset of subsequences sufficient to detect all the faults
detected by the original sequence. Section 6 includes
experimental results and a comparison among the three
procedures. Section 7 concludes the paper.

2 DEFINITIONS AND NOTATION

To describe the compaction procedures, we use the
following definitions and notation.

A test sequence T is represented as T � �t0t1 . . . tLÿ1�,
where ti is the input vector applied at time unit ui.

The subsequence of T between time units uj and uk is
denoted by T �uj; uk�. We have T �uj; uk� � �tj . . . tk�.

The state of the fault-free circuit at time unit ui is denoted
by Si. The initial state S0 is the all-unspecified (all-x) state in
our experiments.

The output vector of the fault-free circuit at time unit ui
is denoted by zi.

The set of target faults (collapsed single stuck-at faults) is
denoted by F . The set of faults detected by a given test
sequence T is denoted by Fdet.

For every fault f 2 F , we denote by Sfi and zfi the state
and output vector of the faulty circuit at time unit ui,
respectively. We also define the combined fault-free/faulty
state Si=S

f
i at time unit ui.

The time unit where a fault f 2 Fdet is detected for the
first time is denoted by udet�f�.

The effective test length Leff of T is the minimum length
of a subsequence of T that starts at time unit 0 and
includes the detection time of every detected fault, or
Leff � maxfudet�f� : f 2 Fdetg � 1.

3 COMPACTION BASED ON AN INSERTION

OPERATION

In this section, we describe a test compaction method based
on the following operation: Consider a fault f 2 Fdet with
detection time udet�f� (we describe the selection of the fault
f later). Let uj and uk be two time units such that uj < uk �
udet�f� and such that Sj=S

f
j � Sk=Sfk (i.e., Sj � Sk and

Sfj � Sfk). Since Sj=S
f
j � Sk=Sfk , T �uj; ukÿ1� only serves to

take the fault-free/faulty circuits back to their states at time
unit uj and T detects f even if we omit T �uj; ukÿ1] from T .
The sequence obtained by omitting T �uj; uk ÿ 1� from T is
T �u0; ujÿ1� � T �uk; uLÿ1� (� stands for concatenation of sub-

sequences). Under the proposed operation, we define a new
test sequence, where fault f is detected earlier, as follows:
The subsequence T �uk; udet�f�� is duplicated and inserted at
time unit uj. As a result, the detection time of f is reduced
from udet�f� to udet�f� ÿ �uk ÿ uj�. The remaining part of the
sequence, T �uj; uLÿ1�, is pushed to the right. The new test
sequence is

T 0 � T �u0; ujÿ1� � T �uk; udet�f�� � T �uj; uLÿ1�:
We refer to this operation as the insertion operation. The
insertion operation increases the total length of the test
sequence; however, it allows us to reduce its effective length
by reducing the highest detection times. The shorter
sequence T �u0; uLeffÿ1� is then used instead of T . The
following examples demonstrate the insertion operation.

Example. Consider the test sequence for ISCAS-89 bench-
mark circuit s27 shown in Table 1. The detected faults
and their detection times are shown in Table 2, as
follows: A fault v stuck-at � is given as v=�. In the row
where i � i0, we show all the faults for which
udet�f� � ui0 . The total number of faults detected is 31.
Simulating the fault 19/1, we find that the combined
fault-free/faulty states are identical at time units 17 and
18. In addition, we know that the fault is detected at time
unit 19. The insertion operation proceeds as follows: We
extract T �18; 19� � �0111; 1010� and insert it at time unit
17, pushing T �17; 19� by two time units to the right. The
resulting sequence is shown in Table 3. The only
detection time that changes is that of the fault 19/1 (all
other detection times are prior to time unit 17 and are
therefore not affected by the change we made). The new
detection time of the fault 19/1 is 18 (instead of 19). This
shortens the effective sequence length by one time unit,
from 20 to 19.

Example. Consider the test sequence of ISCAS-89 bench-
mark circuit s27 shown in Table 4. The detected faults
and their detection times are shown in Table 5. The total

POMERANZ AND REDDY: PROCEDURES FOR STATIC COMPACTION OF TEST SEQUENCES FOR SYNCHRONOUS SEQUENTIAL CIRCUITS 597

TABLE 1
Test Sequence 1 of s27

TABLE 2
Detection Information for Test Sequence 1 of s27

number of faults detected by this sequence is 28.
Simulating the fault 6/1, we find that the combined
fault-free/faulty states are identical at time units 17 and
19. In addition, we know that the fault is detected at time
unit 19. The insertion operation proceeds as follows: We
extract T �19� � �0110� and insert it at time unit 17,
pushing T �17; 19� by one time unit to the right. The
resulting sequence is shown in Table 6. The change
affects faults 6/1 and 24/1, with detection times 19 (other
detection times are prior to the change we have made in
the sequence and therefore are not affected by it). The
detection times for the modified sequence are shown in
Table 7. Both faults 6/1 and 24/1 that previously had
detection time 19 are now detected at time unit 17. In
addition, fault 19/1 that was not detected previously is
detected at time unit 18 after the change. The result of the
insertion operation is thus a reduction by one in the
effective test length, and an increase by one in the
number of detected faults.
After performing an insertion operation, additional

insertion operations using the new sequence can further
reduce the effective test length and increase the fault
coverage. The proposed test compaction procedure applies
the insertion operation iteratively until no additional
improvements in effective test length and fault coverage
can be obtained. A guaranteed reduction in effective test
length can only be achieved if the highest detection times

are reduced by performing the insertion operation for faults
such that udet�f� � Leff ÿ 1. Nevertheless, we consider all
the faults since, by moving a lower detection time, it may
become possible to reduce the highest detection times
further than in the original sequence. In addition, a fault
with a high detection time may be detected earlier or other
faults, not detected by the test sequence, may be detected by
applying the insertion operation to a fault with
udet�f� � Leff ÿ 1. We use the following considerations in
designing the compaction procedure.

The previous examples demonstrate how the insertion
operation can reduce the effective test length and increase
the fault coverage of a given test sequence. The insertion
operation ensures that the fault for which it is performed is
still detected after the operation is performed and that its
detection time is reduced. However, another fault detected
by the sequence may not be detected after insertion is
performed. For example, consider a fault f1 with equal
states at time units uj and uk and a fault f2 with detection
time udet�f2� � uj. The insertion operation applied to f1

changes the subsequence T �uj; uLÿ1� and the new sequence
may not detect f2. To minimize this effect, we perform the
insertion operation starting with faults that have the highest
detection time and reduce the detection time considered
only if no additional insertion operations are possible for
faults with the currently considered detection time. We also
select the time units uj and uk where the combined fault-
free/faulty states are the same such that uk is as high as
possible and, if a choice exists, uj is also as high as possible.
To guarantee that the fault coverage is not reduced, we do
not accept an insertion operation that reduces the fault
coverage. If fault simulation after insertion reveals that the
fault coverage is lower than before, we restore the test
sequence before insertion and proceed to consider other
faults.

From our experiments, we found that an insertion
operation that does not reduce the effective test length or
even increases it may be effective in allowing a later
change to reduce the effective test length below what is
otherwise possible. We thus allow insertion operations

598 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 6, JUNE 2000

TABLE 3
Test Sequence 1 of s27 after an Insertion Operation

TABLE 4
Test Sequence 2 of s27

TABLE 5
Detection Information for Test Sequence 2 of s27

that (temporarily) increase the effective test length. We
always store the best test sequence obtained so far to
ensure that, at the end of the process, we can recover an
earlier test sequence if it is shorter.

Several parameters are used to limit the run time of the
procedure. An upper bound Lmax is imposed on the total
test length. Note that each insertion operation increases the
length of the sequence, even if it reduces its effective length.
For example, in Table 3, the total sequence length is
increased from 20 to 22, although the effective length is
reduced from 20 to 19. By setting a bound on the total test
length, we limit the number of insertion operations that can
be performed. Another bound, Nno-improve, ensures that at
most Nno-improve consecutive insertion operations are done
that do not improve the fault coverage and/or reduce the
effective test length. After Nno-improve such operations, the
procedure terminates.

Every time an insertion operation is accepted (i.e., it does
not reduce the fault coverage), fault simulation is per-
formed, detection times for all the faults are determined,
and the faults are considered again, starting with the one
that has the highest (new) detection time. An insertion
operation that is not accepted is canceled and the next fault
is considered. If all the faults are considered and no
insertion operation is accepted, the procedure is terminated.
The procedure is summarized next.

Procedure 1: Static compaction based on insertion operations

1. Simulate the test sequence T , find the set of detected
faults Fdet and find the detection time of every fault
in Fdet. Let Ndet � jFdetj.

2. Set Tbest � T . Set Nno-improve � 0.
3. Order the faults in Fdet according to decreasing

detection times.
4. If Fdet is empty, go to Step 6.
5. Let the first fault in Fdet be f . Perform the following

steps for f :

a. Remove f from Fdet.
b. Find time units uj and uk such that uj < uk �

udet�f� and Sj=S
f
j � Sk=Sfk .

c. If uj and uk, as in Step b, do not exist, go to
Step 4.

d. Perform insertion according to uj, uk, and
udet�f�. If the test length exceeds Lmax, go to
Step 6.

e. Fault simulate the new test sequence, find the
set of detected faults Fdet and find the detection
time of every fault in Fdet.

f. If jFdetj < Ndet:

i. Restore the previous sequence.
ii. Set nno-improve � nno-improve � 1.
iii. If nno-improve � Nno-improve, go to Step 6.
iv. Go to Step 4.

g. If the number of faults detected is the same as
before, but the effective test length is not
reduced , se t nno-improve � nno-improve � 1. I f
nno-improve � Nno-improve, go to Step 6, otherwise
go to Step 3.

h. (This step is reached if either the number of
faults detected is increased or the effective test
length is reduced.) Set Ndet � jFdetj and go to
Step 2.

6. Stop: Tbest is the compacted sequence.

It is important to note that the simulation procedure in
Step 5.e of Procedure 1 does not have to consider faults that
were not affected by the insertion operation. If insertion is
performed based on uj, uk, and udet�f�, then a fault g with
udet�g� < uj is not affected by the insertion operation and
does not have to be simulated.

The worst-case complexity of Procedure 1 is as follows:
Let us denote by Niter the number of times Step 5 is
performed by Procedure 1. Note that Procedure 1 termi-
nates after Step 4 if Fdet is empty. However, it may perform
more than jFdetj iterations, since the set Fdet may be updated
in Step 5.e. In Step 5.b, the procedure considers at most
O�L2� pairs of time units, and compares values of Nsv lines,
where Nsv is the number of state variables. In Step 5.e, fault
simulation has complexity O�jFdetjLNlines�, where Nlines is
the number of lines in the circuit. We obtain a total
complexity of O�Niter�L2Nsv � jFdetjLNlines��.

We show in Section 6 that compaction based on the
insertion operation is effective in reducing the effective test
length and increasing the fault coverage of test sequences
generated by various test generation procedures. The main
disadvantage of compaction based on the insertion opera-
tion is that the number of fault simulations it requires to
achieve the minimum test length cannot be bounded. We

POMERANZ AND REDDY: PROCEDURES FOR STATIC COMPACTION OF TEST SEQUENCES FOR SYNCHRONOUS SEQUENTIAL CIRCUITS 599

TABLE 6
Test Sequence 2 of s27 after an Insertion Operation

TABLE 7
Detection Information for the Modified Test Sequence 2 of s27

found that, in many cases, a sequence of insertion
operations is required that do not improve the fault

coverage, and possibly increase the effective test length,
before an additional insertion operation can reduce the
effective test length below its original level and/or increase
the fault coverage. Such a sequence of operations is shown
graphically in Fig. 1, where Operations 1, 2, and 3 increase
the effective test length, leaving the fault coverage un-
changed, and Operation 4 reduces the effective test length
below its original level (before Operation 1 is applied) and
increases the fault coverage above its original level. In such
cases, Operation 4 alone (not preceded by Operations 1-3)
cannot achieve the same improvement. Due to the intricate
relationships between consecutive insertion operations,
heuristics for reducing the number of insertion operations
and, hence, the number of fault simulations are difficult to
derive. We therefore prefer the structure of Procedure 1,
where the number of fault simulations is arbitrarily limited
by setting a limit on the number of insertion operations that
do not yield an improvement.

4 COMPACTION BASED ON VECTOR OMISSION

The compaction method described in this section is based
on omission of test vectors from the given sequence.
Omission of redundant vectors was considered before for

combinational circuits under stuck-at faults and under path
delay faults. Here, it is considered in the context of
synchronous sequential circuits.

The omission of a vector ti affects the detection of the
faults ffg for which udet�f� � ui. In addition, it may cause a
fault which is undetected when ti is included in the test
sequence to be detected after ti is omitted. These effects are
taken into account by fault simulating the sequence after ti
is omitted.

We consider the test vectors for omission in the order in
which they appear in the test sequence. For
i � 0; 1; . . . ; Lÿ 1, we omit ti and recompute the fault
coverage by simulating only the faults with udet�f� � ui
and the undetected faults. If the fault coverage after

omission is not lower than the fault coverage before
omission, we accept the change. Otherwise, we restore ti.

The omission of a test vector ti requires that tj�1

would be copied into tj for j � i; i� 1; . . . ; Lÿ 2. Instead
of copying parts of the test sequence every time a vector
is omitted, we use the simulation process described by
Procedure 2. We use a variable called omitted�i�. We set
omitted�i� � 1 if vector ti is omitted, otherwise,
omitted�i� � 0. If omitted�i� � 0, conventional simulation is
carried out. If omitted�i� � 1, simulation under ti is not
required and the present state at time unit i� 1 is equal to
the present state at time unit i. Procedure 2 is described for
a single fault f .

Procedure 2: Fault simulation with omitted vectors

1. Set P and Pf to be the all-unspecified initial states.
2. Set i � 0.
3. If omitted�i� � 0:

a. Apply to the combinational logic of the fault-
free/faulty circuits the input value ti=ti and the
combined present-state P=Pf .

b. Obtain the combined output zi=z
f
i and next state

N=Nf .
c. If zi and zfi conflict on any output, set udet�f� �

ui and stop.
d. Set P=Pf � N=Nf .

4. Set i � i� 1. If i < L, go to Step 3.

The test compaction procedure is summarized next. Note
that, even if a vector ti cannot be omitted from the original
sequence, after omitting a vector tj, where j > i, it may
become possible to omit ti. To take advantage of this
observation, the test sequence after vector omission is
considered again until no additional vectors can be omitted.
We point out that ti and tj are not considered explicitly by
the procedure. Instead, an additional iteration is made as
long as vectors were omitted in the previous iteration.

Procedure 3: Static compaction based on vector omission

1. Set omitted�i� � 0 for every 0 � i � Lÿ 1. Fault
simulate the test sequence and store the fault
coverage in FC.

2. Set i � 0.
3. Set omitted�i� � 1 and fault simulate the test

sequence (only undetected faults and faults with
udet�f� � ui need to be simulated).

4. If the fault coverage is smaller than FC, set
omitted�i� � 0 and restore the detection times prior
to the omission of vector i. Otherwise, store the new
fault coverage in FC.

5. Set i � i� 1. If i < L, go to Step 3.
6. If omitted�i� � 1 for any vector i, rearrange the

sequence by omitting the vectors with omitted�i� � 1
and go to Step 1.

The complexity of Procedure 3 is as follows: We denote
by Niter the number of iterations of Steps 1-6 performed by
Procedure 2. Since the procedure terminates when no
reduction in test length is achieved in an iteration over
Steps 1-5, and assuming the worst case where the test length
is reduced by one vector at every iteration, we have

600 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 6, JUNE 2000

Fig. 1. A sequence of insertion operations.

Niter � L. In each iteration over Steps 1-5, Steps 3-5 are
repeated L times. Fault simulation in Step 3 has complexity
O�LjFdetjNlines�, where Nlines is the number of circuit lines.
The total complexity is O�NiterL

2jFdetjNlines�.
In Step 3 of Procedure 3, we simulate only faults detected

at or after the omitted vector and undetected faults. Faults
detected before the omitted test vector do not have to be
resimulated. To allow this saving in fault simulation, we
must have the values of fudet�f�g updated for the current
test sequence. For this reason, in Step 4 of Procedure 3, if ti
cannot be omitted, then the detection times are restored.
This ensures that the values of fudet�f�g are updated. For
simplicity of presentation, this feature is omitted from the
variation of Procedure 3 described below and all the faults
are resimulated there.

We observed through experimental results that, when
the sequence to be compacted is long, there is a large
number of input vectors at the beginning of the sequence
that can be omitted without reducing the fault coverage. In
addition, there are long subsequences of consecutive
vectors starting at arbitrary time units in the test sequence
that can be omitted. To take advantage of the existence of
such subsequences and reduce the number of simulations
performed by Procedure 3, we use binary search. Binary
search is initiated starting from a vector ti that can be
omitted. The binary search terminates with the last vector tj
such that T �ui; uj� can be omitted. The advantage of binary
search is that instead of performing jÿ i� 1 simulations to
omit ti; ti�1; . . . ; tj sequentially in Procedure 3, the binary
search procedure performs dlog2�Lÿ i�e simulations. A
procedure for omitting vectors that uses binary search is
given next.

Procedure 4: Binary search for subsequences that can be
omitted

1. Set START � 0 (START indicates the first vector to
be considered for omission).

2. Set omitted�i� � 0 for every 0 � i � Lÿ 1. Fault
simulate the test sequence and store the fault
coverage in FC.

3. Set i � START .
4. Set omitted�i� � 1 and fault simulate the test

sequence.
5. If the fault coverage is smaller than FC:

a. Set omitted�i� � 0.
b. Set i � i� 1. If i < L, go to Step 4.
c. If START � 0, stop: All the vectors in the

sequence (from i � START � 0 to i � Lÿ 1)
have been tried and no additional vectors can be
omitted.

d. (START 6� 0 and there may be vectors before
START that can be omitted.) Set START � 0
and go to Step 3.

6. (This step is reached if vector i can be omitted.
Binary search is used to find the longest subse-
quence starting from i that can be omitted). Set
start � i (start is used to store the first vector that
can be omitted). Set LB � start and UB � Lÿ 1 (LB
and UB are the boundaries of the binary search,

between which we will find the last vector that can
be omitted).

7. Set MID � �LB� UB�=2. Set omitted�i� � 1 for
start � i �MID. Fault simulate the test sequence.

8. If the fault coverage is smaller than FC, set
UB �MIDÿ 1. Otherwise set LB �MID� 1.

9. If LB � UB, go to Step 7.
10. Execute the following steps (this step is reached

when LB > UB, indicating that the binary search is
complete and that the vectors from tstart to tUB can be
omitted):

a. Rearrange the sequence by omitting the vectors
tstart; . . . ; tUB.

b. Set L to be the new length of the test sequence.
Set START � start� 1.

c. Go to Step 2.

Procedure 3 (and its extension Procedure 4) can be
viewed as a reverse order fault simulation procedure that
attempts to omit vectors that were included to detect certain
faults, but are no longer necessary in order to detect those
faults once the test sequence is extended to detect additional
faults. A different view of reverse order fault simulation
that performs simulation starting from the end of the
sequence and keeps vectors that are required to detect yet-
undetected faults, is given at the end of Section 5.

5 COMPACTION BASED ON VECTOR SELECTION

The procedure described in this section is based on selection
of subsequences to detect the faults in Fdet, and proceeds as
follows: For every fault, we first collect all the subsequences
of the given sequence that detect the fault. A subsequence
T �us; ue� is said to detect a fault f if T �us; ue� detects f when
the circuit is started from the combined all-unspecified
fault-free/faulty initial state at time unit us. The subse-
quence T �us; ue� is represented by a pair �s; e�. After
collecting all the subsequences that detect every fault, we
use a covering procedure to select a minimal subset of
subsequences to detect all the faults. During the covering
procedure, if two subsequences �s1; e1� and �s2; e2� such that
s1 � s2 � e1 � e2 are selected, we merge the two subse-
quences into the subsequence �s1; e2� and mark as detected
all the faults with subsequences contained in this range. The
following example demonstrates this process.

Example. We consider s27 under the test sequence shown in
Table 8. Fault simulating the sequence starting from time
unit 0, we find that fault 2/0 is detected at time unit 3,
fault 3/0 is detected at time unit 4, fault 4/0 is detected at
time unit 4, fault 6/1 is detected at time unit 3, fault 7/0
is detected at time unit 9, and so on. The corresponding
subsequences are (0, 3), (0, 4), (0, 4), (0, 3), and (0, 9).

Next, we start simulation from time unit 1, setting the
combined fault-free/faulty state at time unit 1 to the all-
unspecified state. We find that fault 2/0 is detected at
time unit 9, fault 3/0 is detected at time unit 10, fault 4/0
is detected at time unit 4, fault 6/1 is detected at time
unit 9, fault 7/0 is detected at time unit 9, and so on. The
corresponding subsequences are (1, 9), (1, 10), (1, 4), (1, 9),

and (1, 9). For the fault 4/0, we now have two

POMERANZ AND REDDY: PROCEDURES FOR STATIC COMPACTION OF TEST SEQUENCES FOR SYNCHRONOUS SEQUENTIAL CIRCUITS 601

subsequences defined by (0, 4) and (1, 4). Since the first

subsequence contains the second one, we omit the first

and keep only (1, 4). Similarly, for the fault 7/0, we only

keep the range (1, 9).

After considering every time unit as a starting point

and finding detection times for all the faults, we obtain

the subsequences shown in Table 9. We now select a

subset of subsequences to detect all the faults. The

subsequence (7, 9) is necessary to detect the faults 7/0

and 15/0. The subsequence (3, 5) is necessary to detect

the fault 16/0. Once these subsequences are selected,

additional faults are covered, including 2/0, 6/1, 8/0,

9/1, and so on. The subsequences for the remaining

faults are shown in Table 10.

Next, we consider each one of the subsequences of

Table 10 and repeatedly select the best one. The best

subsequence is the one that, together with the sub-

sequences already selected, covers the largest number of

remaining faults and requires the smallest number of

additional input vectors. For example, selecting subse-

quence (0, 4) detects six additional faults (3/0, 4/0, 9/0,

11/0, 12/0, and 15/1) and requires three additional

vectors (t0, t1, and t2; t3 and t4 were already selected).

Selecting subsequence (9, 12) detects all eight faults. For

example, fault 3/0 is detected since (7, 9) has already

been selected. By adding (9, 12), we obtain the

subsequence (7, 12), containing the subsequence (7, 10)

that detects 3/0. In this case, we select the subsequence

(9, 12).
In summary, we selected the subsequences (3, 5),

(7, 9), and (9, 12), to result in the new sequence
T �u3; u5� � T �u7; u12�.

In the example above, we selected the subsequences
independently, without considering the faults detected
when two selected subsequences �s1; e1� and �s2; e2� are
placed next to each other. This saves the simulation effort
required to identify such faults; however, it may result in
sequences that are longer than necessary. In our imple-
mentation of the selection procedure, after selecting a
subsequence, we create a new test sequence made up of
the selected subsequences in the order by which they
appear in the original sequence. We then simulate the new
sequence to identify the faults that still need to be detected.
For example, suppose that the subsequences (9, 11), (1, 4),
(7, 9), (4, 5) are selected in this order. After selecting (9, 11)
and (1, 4), we simulate the sequence T 0 � �t1t2t3t4t9t10t11�.
After selecting (7, 9), we simulate the sequence
T 00 � �t1t2t3t4t7t8t9t10t11�. After selecting (4, 5), we simulate
the sequence T 000 � �t1t2t3t4t5t7t8t9t10t11�. In every case, we
drop the faults detected and select the next subsequence
based on the remaining faults. Note that the faults detected
by T 00 are not necessarily a superset of the faults detected by
T 0 since the addition of t7 and t8 may prevent certain faults
that were accidentally detected by placing the subsequences
(1, 4) and (9, 11) consecutively from being detected.

602 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 6, JUNE 2000

TABLE 8
Test Sequence 3 of s27

TABLE 9
Test Subsequences out of Sequence 3 of s27

TABLE 10
Test Subsequences for Remaining Faults

However, by selecting additional subsequences as long as
undetected faults remain, we ensure that all the faults are
detected by the final sequence obtained. The procedure is
summarized next.

Procedure 5: Static compaction based on selection

1. For every f 2 F , set S�f� � �.
2. For every time unit us, u0 � us � uLÿ1:

For every fault f :
If f is detected by the test sequence T �us; Lÿ 1�
when the combined state at time unit us is the
all-unspecified state and the detection time is ue,
add �s; e� to S�f�.

3. S e t Fdet � ff : S�f� 6� �g. S e t Fleft � Fdet. S e t
selected�u� � 0 for every time unit u0 � u � uLÿ1.

4. For every fault f 2 Fleft such that jS�f�j � 1:

a. Let S�f� � f�s; e�g.
b. Call procedure select�s; e� (this procedure, given

below, updates the faults detected and the
vectors included in the test sequence when
�s; e� is selected).

5. If Fleft � � stop: The new test sequence contains
every vector ti such that selected�ui� � 1, in the order
they appear in T .

6. For every �s0; e0� 2 [fS�f� : f 2 Fleftg:
a. Using the sets fS�f�g, compute the number of

faults in Fleft which are detected if �s0; e0� is
added to the subsequences already selected. Let
this number be n0det.

b. Compute the number of time units u such that
us0 � u � ue0 and selected�u� � 0. Let this number
be n0add.

7. Select the subsequence �s0; e0� for which n0det is
maximum. If a choice exists, select the one for which
n0add is minimum. Call Procedure select�s0; e0�.

8. Go to Step 5.

Procedure select�s; e�:
1. Set selected�u� � 1 for every time unit us � u � ue.
2. Construct a new test sequence that contains every

vector ti such that selected�ui� � 1, in the order they
appear in T .

3. Find the set of faults F 0det detected by the test
sequence constructed in Step 2 . Def ine
Fleft � Fdet ÿ F 0det.

The worst-case complexity of Procedure 5 is as follows:
In Step 2, we simulate every fault starting from every time
unit. The complexity of this step is O�jFdetjL2Nlines�. Steps 5-
8 are repeated at most jFdetj times until all the faults are
detected. In Step 6, we consider at most O�L2� pairs of time
units. In Step 6.a, computing the number of faults detected
corresponding to �s0; e0� has complexity O�jFdetjL2�. The
overall complexity is O�jFdetj2L4 � jFdetjL2Nlines�.

Procedure 5 can be modified into a reverse order fault
simulation procedure that omits test vectors similar to
Procedure 3. The advantage of the modified procedure
compared to Procedure 5 is a reduced number of fault
simulations. The modified procedure proceeds as follows:
Starting from time unit us � uLÿ1 and reducing us, we find

the last subsequence of T that detects every fault. During
this simulation process, if a fault f is detected for the first
time (corresponding to the highest value of us) by a
subsequence �s; e�, then f is not considered under smaller
values of us. At the end of the simulation process, we have,
for every fault f , a single subsequence �s; e�, where us is the
last time unit after which f can still be detected by a
subsequence of T . We create a new test sequence by
including only vectors ti such that us � ui � ue for some
fault f and omitting the other test vectors. For example, in
the case of s27 and the sequence shown in Table 8, we find,
from Table 9, that the last subsequences to detect the
detected faults are as shown in Table 11. We keep the
subsequences of Table 11 and omit the test vectors not
included in them. The resulting test sequence is
�t3t4t5t7 . . . t13�. This test sequence can be further compacted
by repeating the same procedure. Similarly to Procedure 3,
this procedure omits test vectors appearing earlier in the
sequence if there exist vectors later in the sequence that
allow the same faults to be detected. The difference from
Procedure 3 is in the order of fault simulation. Procedure 3
starts from the beginning of the test sequence. In contrast,
the modification of Procedure 5 starts from the end of the
test sequence. The advantage of Procedure 3 over the
modified Procedure 5 is that a decision to omit a vector can
be made immediately when it is considered. In the modified
Procedure 5, vectors can be omitted only after the last
detecting subsequences are found for all the faults. Thus, it
is impossible to take into account, in the modified
Procedure 5, faults which are detected because two
subsequences that were previously separated become
adjacent after the modification.

6 EXPERIMENTAL RESULTS

We applied Procedure 1 (based on insertion), Procedure 4
(based on omission), and Procedure 5 (based on selection)
to test sequences produced by different test generation
procedures [2], [3], [4], [5], [6]. In Procedure 1, we used
Nno-improve � 100 and a maximum test length of 15,000.
Three of the test generation procedures whose test
sequences we consider [4], [5], [6] do not use any special
test compaction techniques. The procedure of [2] uses static
compaction, and the procedure of [3] uses aggressive
dynamic compaction that results in very short test
sequences. Test sequences of other procedures, such as
[14], [15], [16], [17], are not available to us at this time.

POMERANZ AND REDDY: PROCEDURES FOR STATIC COMPACTION OF TEST SEQUENCES FOR SYNCHRONOUS SEQUENTIAL CIRCUITS 603

TABLE 11
Selection of Latest Subsequences

The results of test compaction by Procedure 1 (based on
insertion), Procedure 4 (based on omission), and
Procedure 5 (based on selection) are reported in Tables 12
and 13. In each table, the effective test length and the
number of detected faults by the original test sequence is
followed by the same information for the modified
sequences after test compaction. In the last row of each
table, we show the total test length and the total number of
detected faults obtained by the corresponding procedure.
We applied all three static compaction procedures only to
some of the test sequences and some of the circuits.

Table 12a contains the results of applying static compac-
tion to test sequences produced by LOCSTEP [6]. LOCSTEP
is a test generation procedure based on logic simulation and
it generates very long test sequences. Table 12b contains the
results of applying static compaction to test sequences
produced by HITEC [5]. All three compaction techniques
yield large reductions in the length of the test sequences
produced by HITEC and LOCSTEP. In most cases,
Procedure 4 is the most effective of the three procedures
proposed. These claims are supported by the total test
lengths under the columns corresponding to the original
sequences, and to Procedures 1, 4, and 5. It can also be seen
that the test compaction techniques sometimes increase the
number of faults detected by the test sequence. This is
evident from the total numbers of detected faults under the
corresponding columns.

Since Procedure 4 proved to be the most effective static
compaction procedure for two types of test generation
procedures considered in Table 12, we apply only

Procedure 4 to additional test sequences and circuits.

Table 13a contains the results of applying Procedure 4 to

additional test sequences produced by LOCSTEP [6]. Table

13b contains the results of applying Procedure 4 to

additional test sequences produced by HITEC [5]. Table

13c contains the results of applying Procedure 4 to test

sequences produced by FASTEST [4]. Table 13d contains the

results of applying Procedure 4 to test sequences produced

by SEQCOM 0 [3]. Table 13e contains the results of applying

Procedure 4 to test sequences produced by the procedure of

[2]. The results reported in Table 13 demonstrate that the

proposed static compaction procedure significantly reduces

the lengths of test sequences produced by a variety of test

generation procedures. This includes the procedure of [3]

that uses memory-intensive dynamic compaction to pro-

duce test sequences that are already very short. Further-

more, in many cases, an increase in fault coverage is also

obtained. In most cases, Procedure 4 went through only one

or two iterations before no additional vectors could be

removed.
Next, we consider the run time of Procedure 4. In the

experiments reported above, our goal was to show the level

of compaction achievable by Procedure 4 and the run time

was not taken into account in the implementation of the

procedure. In the experiments reported below, we use the

following techniques to limit the run time of the procedure.

These techniques have no impact or, in the worst case, have

marginal impact on the level of compaction.

604 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 6, JUNE 2000

TABLE 12
Results of the Three Compaction Procedures

(a) Test sequences of LOCSTEP [6]. (b) Test seqences of HITEC [5].

1. When the input vector at time unit u is omitted, only
faults detected at time unit u or later are simulated.
More generally, when the input vectors between
time units u1 and u2 are omitted during binary
search, only faults detected at time unit u1 or later
are simulated. This has no effect on the level of
compaction achieved, but reduces the number of
faults that need to be simulated, especially for large
values of u or u1.

2. In Procedure 4, all the target faults (or all the target
faults detected at or after a given time unit u, as well
as undetected faults) are simulated every time an
input vector or subsequence of input vectors are
omitted from the test sequence. To reduce the
number of faults that need to be simulated, we
simulate only the faults detected by the original test
sequence T . Thus, if Fdet includes all the faults
detected by T , then only faults in Fdet are simulated
during the compaction procedure. This implies that
a fault f 62 Fdet which is detected by a modified test
sequence T 0, derived during the compaction proce-
dure, is not recorded. Moreover, if a fault f 2 Fdet is
not detected by such a modified input sequence T 0,
then the last step of vector omission leading to T 0 is
not accepted even if T 0 detects a larger number of
faults than T . This may have a marginal impact on
the final test length obtained. The sequence may be
shorter or longer than the sequence obtained with-
out this technique. To capture faults that are
detected by the final test sequence and not included
in Fdet, the final test sequence can be simulated after
compaction terminates.

In our implementation of Procedure 4, we do not use any
techniques such as parallel fault or parallel pattern
simulation to speed up the fault simulation process itself.
As a result, the run times of Procedure 4 are high. To report
the run time in a meaningful way, we normalize it to the
time it takes to fault simulate the given test sequence T . We
denote by rtbase the time it takes to simulate all the target
faults under T . During the application of Procedure 4, we
record its run time after every application of binary search
that yields a modified test sequence T 0. We denote the time
to obtain T 0 by rt0. We report the normalized run time rt0

rtbase
for every such modified sequence in the form of a graph
where the test sequence length is plotted as a function of the
normalized run time. The results using the test sequences
generated by HITEC [5] for s298 and s400 are reported in
Fig. 2. The vertical dashed lines in the figures indicate the
end of an iteration of Procedure 4. An iteration starts when
START is set to 0 either in Step 1 or in Step 5.d of Procedure
4 and the input vectors are considered for omission starting
with the test vector at time unit 0. Additional results are
reported in Table 14. For each iteration, we show in Table 14
the test length and the normalized run time.

The following conclusions can be drawn from Fig. 2 and
Table 14.

1. Most of the compaction occurs in the first iteration of
Procedure 4, although only a fraction of the total run
time is spent in this iteration. Thus, it is possible to
terminate Procedure 4 after its first iteration at a

POMERANZ AND REDDY: PROCEDURES FOR STATIC COMPACTION OF TEST SEQUENCES FOR SYNCHRONOUS SEQUENTIAL CIRCUITS 605

TABLE 13
Results of Procedure 4

(a) Test sequences of LOCSTEP [6]. (b) Test sequences of HITEC [5].
(c) Test sequences of FASTEST [4]. (d) Test sequences of SEQCOM 0
[3]. (e) Test sequences of [2].

significant reduction in run time but without a
significant loss in compaction.

2. A large number of compaction steps result in
relatively small reductions in test length. When only
a small number of vectors are omitted, sequential
search is faster than binary search. For example,
consider a case where binary search is performed
over 1,024 input vectors, requiring 10 passes of fault
simulation. Suppose that only five vectors are
omitted as a result. In this case, sequential search
that omits the vectors one at a time may be faster
than binary search. Careful selection between

sequential search and binary search can be used to
further reduce the run time of the procedure.

7 CONCLUDING REMARKS

We proposed three static compaction techniques for test

sequences of synchronous sequential circuits. The first

technique duplicated subsequences of the test sequence

and inserted them at prior time units in an attempt to

achieve earlier detection of faults. The second technique

omitted superfluous input vectors. Binary search was used

to identify subsequences that can be omitted. The third

606 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 6, JUNE 2000

Fig. 2. Normalized run times. (a) s298. (b) s400.

TABLE 14
Normalized Run Times

technique analyzed the coverage of subsequences of the test
sequence and used a covering procedure to select a minimal
subset. Comparison of the three techniques on test
sequences generated for benchmark circuits by various test
generation procedures showed that omission is the most
effective as a static compaction technique. The results also
show that test sequences generated by various test genera-
tion procedures can be significantly compacted. The
compacted sequences thus have shorter test application
times and smaller memory requirements. In addition, the
ability to significantly reduce the length of the test
sequences indicates that it may be possible to reduce test
generation time if superfluous input vectors are not
generated.

ACKNOWLEDGMENTS

The research reported in this paper was supported in part
by U.S. National Science Foundation Grant No. MIP-
9357581. This work is based on ªOn Static Compaction of
Test Sequences for Synchronous Sequential Circuits,º which
appeared in the Proceedings of the ACM/IEEE 33rd Design
Automation Conference, pp. 215-220, June 1996.

REFERENCES

[1] R.K. Roy, T.M. Niermann, J.H. Patel, J.A. Abraham, and R.A.
Saleh, ªCompaction of ATPG-Generated Test Sequences for
Sequential Circuits,º Proc. Int'l Conf. Computer-Aided Design,
pp. 382-385, Nov. 1988.

[2] B. So, ªTime-Efficient Automatic Test Pattern Generation Sys-
tems,º PhD thesis, Electrical Eng. Dept., Univ. of Wisconsin at
Madison, 1994.

[3] I. Pomeranz and S.M. Reddy, ªOn Generating Compact Test
Sequences for Synchronous Sequential Circuits,º Proc. European
Design Automation Conf. '95, pp. 105-110, Sept. 1995.

[4] T.P. Kelsey and K.K. Saluja, ªFast Test Generation for Sequential
Circuits,º Proc. Int'l Conf. Computer-Aided Design, pp. 354-357, Nov.
1989.

[5] T. Niermann and J.H. Patel, ªHITEC: A Test Generation Package
for Sequential Circuits,º Proc. European Design Automation Conf.,
pp. 214-218, 1991.

[6] I. Pomeranz and S.M. Reddy, ªLOCSTEP: A Logic Simulation
Based Test Generation Procedure,º Proc. 25th Fault-Tolerant
Computing Symp., pp. 110-119, June 1995.

[7] I. Pomeranz and S.M. Reddy, ªVector Restoration Based Static
Compaction of Test Sequences for Synchronous Sequential
Circuits,º Proc. Int'l Conf. Computer Design, pp. 360-365, Oct. 1997.

[8] M.S. Hsiao, E.M. Rudnick, and J.H. Patel, ªFast Algorithms for
Static Compaction of Sequential Circuit Test Vectors,º Proc. VLSI
Test Symp., pp. 188-195, Apr. 1997.

[9] M.S. Hsiao and S.T. Chakradhar, ªState Relaxation Based
Subsequence Removal for Fast Static Compaction in Sequential
Circuits,º Proc. Conf. Design Automation and Test in Europe, pp. 577-
582, Feb. 1998.

[10] R. Guo, I. Pomeranz, and S.M. Reddy, ªProcedures for Static
Compaction of Test Sequences for Synchronous Sequential
Circuits Based on Vector Restoration,º Proc. Conf. Design Automa-
tion and Test in Europe, pp. 583-587, Feb. 1998.

[11] S.K. Bommu, S.T. Chakradhar, and K.B. Doreswamy, ªStatic Test
Sequence Compaction Based on Segment Reordering and Accel-
erated Vector Restoration,º Proc. 1998 Int'l Test Conf., pp. 954-961,
Oct. 1998.

[12] S.K. Bommu, S.T. Chakradhar, and K.B. Doreswamy, ªStatic
Compaction Using Overlapped Restoration and Segment Prun-
ing,º Proc. Int'l Conf. Computer-Aided Design, pp. 140-146, Nov.
1998.

[13] R. Guo, I. Pomeranz, and S.M. Reddy, ªOn Speeding-Up Vector
Restoration Based Static Compaction of Test Sequences for
Sequential Circuits,º Proc. Seventh Asian Test Symp., pp. 467-471,
Nov. 1998.

[14] D.G. Saab, Y.G. Saab, and J.A. Abraham, ªCRIS: A Test Cultivation
Program for Sequential VLSI Circuits,º Proc. Int'l Conf. Computer-
Aided Design, pp. 216-219, Nov. 1992.

[15] E.M. Rudnick, J.H. Patel, G.S. Greenstein, and T.M. Niermann,
ªSequential Circuit Test Generation in a Genetic Algorithm
Framework,º Proc. Design Automation Conf., pp. 698-704, June
1994.

[16] M. Abramovici, M.A. Breuer, and A.D. Friedman, Digital Systems
Testing and Testable Design. Computer Science Press, 1990.

[17] W.-T. Cheng and T.J. Chakraborty, ªGentest: An Automatic Test
Generation System for Sequential Circuits,º Computer, pp. 43-49,
Apr. 1989.

Irith Pomeranz received the BSc degree
(summa cum laude) in computer engineering
and the DSc degree from the Department of
Electrical Engineering at the Technion-Israel
Institute of Technology in 1985 and 1989,
respectively. From 1989 to 1990, she was a
lecturer in the Department of Computer Science
at the Technion. In 1990, she joined the
Department of Electrical and Computer Engi-
neering at the University of Iowa, where she is

currently a professor. Her research interests are testing of VLSI circuits,
design for testability, synthesis, and design verification. Dr. Pomeranz is
a recipient of the U.S. National Science Foundation Young Investigator
Award in 1993 and of the University of Iowa Faculty Scholar Award in
1997. She serves as associate editor of the ACM Transactions on
Design Automation. She served as guest editor of the IEEE Transac-
tions on Computers January 1998 special issue on dependability of
computing systems and as program cochair of the 1999 IEEE Fault-
Tolerant Computing Symposium. Dr. Pomeranz is a fellow of the IEEE.

Sudhakar Reddy obtained his undergraduate
degree in electrical and communication engi-
neering from Osmania University, his MS degree
from the Indian Institute of Science, and his PhD
degree in electrical engineering from the Uni-
versity of Iowa, Iowa City. Dr. Reddy has been
active in the areas of testable designs and test
generation for logic circuits since 1972. He has
been an associate editor and a guest editor
twice of the IEEE Transactions on Computers.

He is an associate editor of the IEEE Transactions on Computer-Aided
Design. Since 1968, he has been a member of the faculty of the
Department of Electrical and Computer Engineering, University of Iowa,
where he is currently a professor. In 1990, he was made a University of
Iowa Foundation Distinguished Professor. Dr. Reddy is a fellow of the
IEEE and a member of Tau Beta Pi, Eta Kappa Nu, and Sigma Xi.

POMERANZ AND REDDY: PROCEDURES FOR STATIC COMPACTION OF TEST SEQUENCES FOR SYNCHRONOUS SEQUENTIAL CIRCUITS 607

