Paper 3.1
54

Fast and Accurate CMOS Bridging Fault Simulation

Jeff Rearick
Hewlett-Packard
Integrated Circuits Business Division
3404 E. Harmony Rd.

Ft. Collins, CO 80525

Abstract

This paper identifies the two key factors involved in
obtaining accurate bridging fault simulation results
and presents a hybrid technique that maximizes both
the speed and accuracy of bridging fault simulation
for gate-level standard cell designs. Both combina-
tional and sequential circuits are studied and the re-
sults are compared with several other bridging fault
simulators.

1 Introduction

The desire to drive the defect levels of integrated cir-
cuits to extremely low levels has focused a great deal
of attention on the simulation of realistic defects. The
traditional single stuck-at fault model does not al-
ways correctly predict the behavior of physical defects
in contemporary MOS technologies [1, 2, 3]. The im-
pact of the shortcomings in the single stuck-at fault
model is that fault simulation using only this model
is no longer an accurate estimator of IC quality [4].
The need for more detailed and realistic fault models
and associated fault simulators is clearly indicated.
Inductive fault analysis has shown that the most
commonly occurring type of fault resulting from fab-
rication defects, modeled as dust particles of various
sizes on photomasks, is the bridging fault [5]; this
fault type will be the focus of this work. While much
of the early work in bridging faults claimed that ei-
ther wired-and or wired-or logic resulted when two
nodes were bridged [6, 7], recent work has shown that
bridging faults cause more complex circuit behavior
than cannot be predicted by permanent wired-logic
fault models (8, 9]. Simulation methods designed to
deal with these complexities exist [10, 11], but can
be computationally expensive or limited to combina-
tional circuits. This paper will present a fast bridging
fault simulation method that accurately models the

Janak H. Patel
University of Illinois
Coordinated Sciences Lab
1308 W. Main St.
Urbana, IL 61801

behavior of bridging faults by considering circuit-level
details near the bridging site while using gate-level
simulation everywhere else.

The circuit types targeted in this research are gate-
level, synchronous, sequential, digital logic circuits.
The bridging defects that are considered in this pa-
per are derived from actual circuit layout data. The
vast majority of previous work on bridging faults has
been done for combinational circuits with randomly
generated bridging fault lists.

The remainder of this paper is organized as fol-
lows: the various abstractions of bridging defects into
bridging faults will be explored in Section 2, the ac-
curacy of those models is discussed in Section 3, a
fast and accurate bridging fault simulation algorithm
that has been developed is described in Section 4, and
concluding remarks are made in Section 5.

2 Bridging Fault Models

The circuit in Figure 1 will be used to illustrate
the differences in bridging fault models at the gate,
switch, and circuit level.

Bridging defects are modeled at the gate level as
permanent network reconfigurations which alter the
logical structure of the circuit. There are four classes
of these wired-logic bridging faults: wired-and, wired-
or, and two kinds of dominant driver faults (when G
always outdrives H (G “wins”) and when H always
outdrives G (G “loses”)). Note that a new node, GH,
is created by the addition of the bridging logic gate,
and this new node drives all of the former destina-
tions of the bridged nodes G and H. In the case of
a dominant driver bridging fault, the losing node is
left to dangle, while the winning node is connected to
all of the destinations of both nodes. Some IC tech-
nologies favor a particular gate-level bridging model;
shorts in TTL, for example, typically result in wired-
and behavior [12]. Unfortunately, CMOS does not

INTERNATIONAL TEST CONFERENCE 1993

0-7803-1429-8/93 $3.00 © 1993 IEEE

I Table 1: Gate input pattern impact on output bridge
A[0] L D voltage

—)= D’— (AL AN JARIABI[B [C [Vou (V) |
—] G 0 0 0 0 o1 4.35
AT on — E 0 [0 [0 [0 Ji[i] 368
Zgndgc K — 0 0 0 1 [[o]1 4.13
B 5 H 0 0 | 0 1T [1]1 3.25
_D F 0 | 0 [1T | 1T JJojT| 368
C 0 0 1 T [1]1 254
0 1 1 1 |01 2.54
L 0 1 1 1 [[1]1 1.38
M 1 1 1 1 [[o]0O 2.66

Figure 1: Example circuit with bridge from G to H

adhere to such a fixed behavior, as will be seen.

Switch-level fault simulators, such as COS-
MOS [13}, CHAMP [14], or IDSIM3 [15] can mimic
a bridging defect by the insertion of a large, perma-
nently conducting transistor between two nodes or
by simply joining the two nodes and forming more
complex pullup and pulldown networks. The former
method does allow some degree of flexibility in mod-
eling the resistance of the bridge by allowing for dif-
ferent sizes (and hence conductance values) of the
bridging transistor. The latter method is simply the
degenerate case of the former, where the transistor is
infinitely large and has zero resistance.

Circuit-level simulators, such as SPICE2 [16] and
SPICE3, can very realistically model a bridging de-
fect by the insertion of a resistor between two cir-
cuit nodes. Capacitive and inductive properties of
the bridging defect, if known, can also be included,
enabling the timing degradation introduced by the
defect to be evaluated. While such delay information
may be useful in detecting bridging defects, this work
focuses only on resistive bridges and their detection
by static voltage-based testing.

3 Accuracy of Bridging Fault
Models

The chief criterion for evaluating the accuracy of the
various bridging fault models will be the degree to
which each predicts the correct voltage values on cir-
cuit nodes around the bridging fault site for each vec-
tor. There are two main factors that differentiate the

accuracy of the models: the determination of the volt-
age value that results at the site of the bridge, and the
interpretation of that voltage value by the receivers
(the gates downstream of the bridge).

3.1 Bridging voltage determination

The connection of two nodes via a bridging defect
implies that the gates driving those two nodes will
be engaged in a drive fight (logic contention) when
they have opposite values. The permanent wired-
logic modifications made to a gate level circuit to
model a bridging fault have a major drawback that
causes inaccuracy: depending on the inputs to the
gates driving the bridge, the logical function of this
drive fight can change between wired-and and wired-
or behavior. This problem, recognized in [17], is il-
lustrated in Table 1, in which a zero-ohm short exists
between the outputs of the NAND and NOR gates
of Figure 1 and various input combinations to these
gates are applied with the resulting output voltage of
the bridged node (Vgx) shown. This.circuit was con-
structed using standard library cells and simulated
with SPICE3. If this bridged output voltage were
being received by a gate input with a logic threshold
of 2.9 V, the first five cases would be interpreted as
a logic one while the last four cases would be seen as
a logic zero. Clearly, the use of a single, permanent
wired-logic fault model would produce incorrect re-
sults on certain test vectors. The input values to the
gates driving the bridge must be considered, not just
the logic output values of those gates, to determine
the relative drive strengths of the shorted pullup and
pulldown networks correctly.

Switch-level simulator evaluation techniques deter-
mine node values by comparing the relative strengths

Paper 3.1
55

of pullup and pulldown networks and thus take into
account the effects of gate input values; the evalua-
tion mechanisms of a switch simulator, designed to
handle ratioed logic, are well-suited to correctly pre-
dicting the behavior of bridging defects. This “Voting
Model” [17] has been shown to be much more accu-
rate than the simplistic gate-level wired-logic bridg-
ing fault models, but itself has limitations: non-linear
transistors are treated as linear resistors, and the as-
sumption is made that the resistance of the bridg-
ing defect is much less than the on-resistance of the
transistors. Furthermore, switch level simulation is
typically much slower than gate level simulation.

Circuit-level simulation, of course, is capable of ex-
tremely accurate simulation, but is even slower than
switch-level simulation.

3.2 Bridging voltage interpretation

The second factor that determines the accuracy of a
bridging fault model is the interpretation of the volt-
age at the bridged node by the receiving logic gate(s).
The previous section demonstrated that circuit-level
details must be considered to deduce the analog node
voltages on either side of the bridging defect. Since
the desired result for gate-level simulation is a digital
value for each node rather than a pair of analog volt-
ages, a conversion must be made back to the digital
realm. It is here that the interpretation issue arises.

A CMOS digital logic gate is basically a very high
gain amplifier that causes its output to be forced to a
power supply rail when the sensitized input is forced
above or below its logic threshold. The input logic
threshold of a gate input is defined as the voltage
value at which the input and output of the gate are
equal (assuming all other inputs to the gate are held
at noncontrolling values). A small deviation of the
input voltage above or below the logic threshold, typ-
ically a few tenths of a volt, is sufficient to cause a
large swing in the output. The decision on how to in-
terpret a bridging voltage must be made with respect
to the input logic threshold voltage of each input of
each gate downstream from the bridge.

The opportunity for simulator error presents itself
at this point because each input of each logic gate
can have a different logic threshold, so that two gates
tied to the same node can interpret the same input
voltage as two different logic values. This situation
has been dubbed “The Byzantine General’s Problem”
in [9], and is illustrated in Figure 2. The SPICE-
derived input threshold voltages for the two-, three-,
and four-input NOR gates are shown in Table 2. The
three-input NOR gate driving signal D in the figure

Paper 3.1

56

0.0

AT 0.0
20 = 2.66 D 095
50 T G
50 A3 bridge = O—_:Di 272
0.0 5>H '

F
0-0 C 2.66 3.72
0.0
0.0

0.0

Figure 2: Byzantine bridging voltage interpretation

Table 2: NOR gate input logic thresholds

| Gate [Input 1 [Input 2 | Input 3 | Input 4 |

nor2 | 2.46 2.66 - -
nord | 2.46 2.59 2.75 -
nord | 2.55 2.66 2.78 2.90

produces a logic zero because the bridging voltage is
about two-tenths of a volt above the threshold of the
first (bottom) input, which is sufficient to pull the
output down to a voltage (below 1 V) well below the
logic threshold of any input of any gate in the library.
The two-input NOR gate driving signal E produces
an intermediate value since the bridging voltage is so
close (about two-thousandths of a volt) to its input
logic threshold voltage. It would be safest to clas-
sify this value as an “unknown” in the simulation
since it lies in the middle of the range of the pos-
sible gate input threshold voltages. The four-input
NOR gate driving signal F produces a logic one be-
cause the bridging voltage is more than two tenths of
a volt below the threshold of the last (top) input, thus
making it incapable of pulling down the output. The
3.7 V output value is well above the logic threshold
of any input for any gate in the library, making this
a solid logic one. This example shows that a single
node value (the bridged node GH) is interpreted in
all three possible (different) ways: 0, X, and 1.

The implication of this behavior is disconcerting:
different branches from a single fanout stem can ef-
fectively have different logic values! Typical gate- and
switch-level simulators use a single value to represent
the voltage on each node (stem) in the circuit and
thus cannot recognize this behavior without special

modifications. Even then, the restriction to digital
values (0, 1, and X) eliminates the possibility of per-
forming comparisons between bridging voltages and
input logic thresholds. These restrictions prevent the
accurate interpretation of bridging voltages by gate-
and switch-level bridging fault simulators.

4 A Fast and Accurate Bridg-
ing Fault Simulator

The tradeoff between speed and accuracy in bridging
fault simulation techniques should be quite clear by
now. Only circuit-level techniques have sufficient in-
formation to produce correct results, while only gate-
level techniques can perform digital simulation with
sufficiently high throughput. This section presents a
hybrid approach based on these two techniques that
can deliver the accuracy of a circuit-level simulator
with the speed of a gate-level simulator.

4.1 Realizations and Ideas

After exploring the mechanics of the various bridging
fault simulation methods, these observations can be
made:

o the vast majority of time spent in bridging fault
simulation is in the digital realm and is very sim-
ilar to single stuck-at fault simulation,

e circuit-level detail need only be used at the
bridging site,

e all likely bridging sites can be identified from lay-
out artwork,

o the only information needed to model the be-
havior of a bridge correctly is the short-circuit
voltage of the two driving gates and the logic
threshold of all receiving gates,

e only a limited number of short-circuit voltages
are possible based on the identified bridging sites
and the number of cells in the library,

o all logic threshold voltages are known from li-
brary characterization.

Given these realizations about the nature of the
procedures essential to bridging fault simulation, the
following ideas suggest themselves:

o use the highest performance single stuck-at sim-
ulator available as the underlying core simulator,

o precompute the short-circuit voltage for all com-
binations of gates (and all pertinent input combi-
nations) that can be involved in a bridging fault,

o precompute the logic threshold voltages for all
library cell inputs,

e modify the fault simulator’s evaluation routine
to specially treat the fault site by using the tabu-
larized short-circuit voltages and logic threshold
voltages.

The crux of the new technique is that a single
stuck-at fault simulator needs to be extended to per-
form one additional type of evaluation: determining
the digital values at gate inputs that are immediately
downstream from the fault site. This is accomplished
in two phases:

1. Use the bridging defect’s driving gates and their
input values to index into a precomputed short-
circuit voltage table to obtain the voltage seen
by the receiving gates, then

2. Compare that voltage to the precomputed logic
threshold voltage for each fanout of the bridge
site to obtain a digital value for simulation.

This method does require the up-front use of
a circuit-level simulator to characterize the short-
circuit and logic threshold voltages of the gate types
that will be used in a design. The cost of charac-
terization is a function of the number of gates in the
library and the number of inputs per gate. For a li-
brary with 100 different gate types and an average of
2.5 inputs per gate, this would translate to 320,000
SPICE runs to determine the bridging voltages and
250 SPICE runs to find the input logic threshold volt-
ages. Fortunately, the simulation models are tiny and
run very quickly, the task is easily automated with
scripts, and much of the data from the bridging volt-
age simulations can be discarded since no drive fight
is caused by many of the input combinations. The
average time per SPICE simulation was found to be
0.363 seconds for this work, which would result in a
total characterization investment of only 32 hours for
this hypothetical library.

The basic flow of the process of bridging fault sim-
ulation is as follows:

1. Characterize the short-circuit voltages of all pos-
sible gate combinations in the library.

2. Characterize the logic threshold voltages of all
inputs of all gate types in the library.

Paper 3.1
57

3. Tabularize these data in the format appropriate
for the simulator.

4. For each chip designed in this library:

(a) Extract the likely locations of bridging de-
fects from the layout data.

(b) Classify the resulting bridging faults as
feedback or nonfeedback.

(c) Fault simulate the chip given the extracted
and classified bridging fault list and a test
vector set.

4.2 Differences from previous work

The notion of using precomputed data to determine
bridging voltages is not new; Acken and Millman sug-
gested it in [8], Millman and Garvey implemented it
in [18], as did Ferguson and Larrabee in [19]. These
approaches all have in common, however, the use of
the voting model based on the resistance of tran-
sistors rather than on explicit SPICE data for each
and every case as is done in this work. The im-
portance of gate input logic threshold voltages has
also been suggested by these authors, but the use of
explicit SPICE-derived data for every gate input is
also unique to this simulator. This feature is key to
obtaining accurate simulation results. These earlier
simulators were also limited to combinational or fully
scanned circuits, while this work handles sequential
circuits. Greenstein and Patel presented a sequen-
tial mixed-level simulator in [10] that executed circuit
level simulation when needed during bridging fault
simulation that gave good accuracy but at the ex-
pense of run time dominated by the circuit simulator.
The use of precomputed SPICE data in this work is
intended to alleviate that bottleneck.

4.3 Assumptions

The following assumptions were made in the devel-
opment of the simulator and are responsible for both
its speed and its limitations:

o Circuits will be standard cell ASICs.

¢ Only routing channel bridging faults will be con-
sidered.

e The circuits will be represented at the logic gate
level.

¢ The size of the standard cell library is reasonably
small (100 gate types or less).

Paper 3.1

The practical import of these assumptions on the sim-
ulator is:

¢ Only logic gate output shorts need to be handled.

¢ The storage space for and cost of library charac-
terization is acceptable.

4.4 Simulation Algorithm

In order to maximize fault simulation performance,
the differential-based PROOFS algorithm [20] was
chosen to be the platform upon which the bridging
fault simulator would be built. The basic algorithm
had to be extended to perform the following func-
tions:

e inject bridging faults instead of stuck-at faults,

e evaluate the short-circuit voltage at a bridging
site,

e compare the short-circuit voltage with the logic
threshold voltage of fanout gates to deduce new
logical values,

o resolve feedback bridging faults.

Fault injection is accomplished by substituting the
gates driving a bridging fault with “fault gates” to in-
dicate that a special evaluation routine must be used
at these points. The original gate types are saved as
part of the injected-fault data structure. The injec-
tion of a bridging fault symbolically ties the outputs
of two gates together such that when either one is
evaluated, the value at the other is used to modify
the output to model the effect of the bridging fault.
The output values of the two driving gates are first
compared to see if they differ; if not, the bridging
fault is not excited and no output change occurs. If
the values differ, then a simple table lookup is per-
formed using the gate types of the two drivers as well
as their input values to offset into an array of short-
circuit voltages.

It is crucial to note that only a relatively small
number of entries need to exist in the short-circuit
voltage table. The table is organized as a two-
dimensional array of “gates which can drive a zero”
versus “gates which can drive a one.” Only those
gate/input combinations which drive with a unique
strength need to exist in the table; for the 16 basic
gates in the library (NOT, NOR2-3-4, NAND2-3-4,
OR2-3-4, AND2-3-4, XOR, XNOR, and DFF) there
are 21 unique ways to drive a zero and 21 other unique

ways to drive a one, making a total of merely 441 en-
tries that must be saved in the table. For a hypothet-
ical library of 100 gate types with 2.5 inputs per gate
and an exhaustive number of unique ways to drive
ones and zeros, there would be approximately 80,000
table entries which, while large, is certainly manage-
able. An entry in the table is accessed by a function
that maps the gate type and number of active inputs
for each of the driving gates into the unique row and
column numbers that correspond to the short-circuit
voltage for that particular drive fight. It should be
noted that the actual decimal values of the bridg-
ing voltages are not stored in the table; an integer
mapping is used to avoid the need for floating-point
comparisons.

As Section 2 pointed out, determining the bridging
voltage is only half of the work required to accurately
model a bridging fault. Once determined, that volt-
age must be compared with the gate input threshold
of the destination. This is accomplished by compar-
ing the integer representation of the bridging voltage
to an integer representation of the tabularized logic
threshold voltage for each input receiving the bridg-
ing voltage. This threshold data is stored in another
table that is accessed by using the gate type and the
input number to index igto an array.

The creation of state storage by feedback bridg-
ing faults is addressed by saving the state of the
nodes involved in the bridge as if they were archi-
tected state storage elements. Since the location of
these state elements must be known in advance, the
fault list and the circuit database are processed prior
to simulation to identify all feedback bridging faults.
Then the same mechanisms used for sequential circuit
simulation can be applied to these feedback bridging
faults. Since some feedback faults can introduce oscil-
lations when properly excited, mechanisms to detect
and suppress oscillations were added to the simulator.

4.5 Implementation/Performance

The simulator package consists of a circuit compiler
coupled to a bridging fault classifier for sorting faults
and identifying feedback bridging faults, as well as
the bridging fault simulator (BRIDGESIM). To eval-
uate the performance of BRIDGESIM, a series of ex-
periments was performed on a subset of the ISCAS
combinational [21] and sequential [22] benchmark cir-
cuits. Actual layouts of these circuits were created
using the OCTTOOLS [23] and the possible bridg-
ing defect sites were extracted from the artwork with
CARAFE [24]. Single stuck-at test vectors were gen-
erated for these circuits using HITEC [25]. Table 3

contains the basic statistics for the eight circuits used
in the experiments, including the single stuck-at fault
coverage of the tests used as well as a breakdown of
the nature of the extracted bridging faults. Since the
prototype simulator was constructed to process only
nonfeedback faults, the results in this section are re-
stricted to that class of bridging faults.

A bridging fault simulation was run for each of
the eight circuits using several different bridging fault
simulators:

¢ EPROOFS [10] is a mixed-level simulator that
specifically targets bridging faults. EPROOFS
uses circuit-level simulation in the region of the
circuit surrounding the bridging fault and gate-
level simulation everywhere else. The “analog
region” is made large enough to assure that only
power-supply rail voltages are passed into the
gate-level portions of the circuit.

o FETSIM is a serial, switch-level bridging fault
simulator developed during the course of this
work which represents bridging faults by phys-
ically joining bridged nodes together.

o IDSIM3 [15), is a concurrent bridging fault simu-
lator that uses a matrix algebra-based equation
formulation and solution technique. The opti-
mistic algorithm used in FETSIM rarely gener-
ates indeterminate values, even in the presence
of a bridge, while the very pessimistic algorithm
used in IDSIM3 produces many unknown values
when bridging faults are introduced.

e PFSIM is a gate-level, unit-delay, event-driven
bridging fault simulator that was developed dur-
ing this research to allow simulation of wired-
logic gate-level bridging fault models (AND,
OR, WIN, and LOSE). The unit-delay paradigm
was chosen because it contains mechanisms that
are inherently capable of resolving the feedback
loops that can be introduced by bridging faults.

A careful accounting of the accuracy of any given
fault simulation technique can be made by checking
the classification of each fault against some known
reference classification. Since EPROOFS represents
the best available technique studied thus far, it was
chosen as the reference. Table 4 shows the number
of mistakes made by each simulator, with respect to
EPROOFS, in classifying the faults in each circuit as
detected, undetected, or potentially detected.

The rows “Total” and “Percent” in the table sum-
marize the results to show the percentage of inaccu-
rate classifications made; BRIDGESIM outperforms

Paper 3.1
59

Table 3: ISCAS benchmark circuit and bridging fault statistics

Circuit # # # # SSA | #Total | #Routing | #Output #Output
name In | Out | Gates | DFFs | Cov% | bridges bridges bridges | FB bridges
cl7 5 2 6 0 100 63 34 24 20
c432 36 7 232 0 99.25 2534 1337 1037 730
s27 4 1 10 3 100 229 50 23 17
5208 10 1 104 8 8.29 1408 545 351 192
5298 3 6 119 14 | 86.04 2107 724 484 195
5344 9 11 160 15| 93.86 2300 843 557 288
s349 9 11 161 15 | 92.57 2338 890 576 308
s641 35 24 379 19 | 86.51 5003 2605 1877 737
| TOTALS T 111 | 63 | 171] 74 | 83.32] 15982] 7028 | 4929 | 2487 |

Table 4: Nonfeedback bridging fault simulation mistake counts, run times (s)

[Circuit | EPROOFS | FETSIM | IDSIM3 |

AND | OR | WIN [LOSE | BRIDGESIM |

17 0 0 4 0 0 0 0 0
c432 0 11 202 | 30| 11| 11 11 5
527 0 2 6 2 3 2 0 0
5208 0 64 69 33| 32| 33 40 8
5208 0 46 273 23| 59| 48 31 13
5344 0 44 261 37| 41| 31 36 21
$349 0 61 260 | 44| 53| 30 49 21
5641 0 9] 1114| 64| 84| 95 68 55
[Total | 0] 307 2279 233] 283] 250 235] 123 |
[Percent | 0] 1257] 93.33] 9.54] 1159 | 10.24] 9.62 5.04 |
[TOT time | 1509.7 | 2843.2| 46438 | 835.1 [1151 |
[AV time | 1887 3554 5805 | 104.4 | 144 |

all of the alternative simulators but still errs too fre-
quently. The last two rows in the table (“TOT time”
and “AV time”) are the total and average run times in
seconds on an HP 9000-730 for EPROOFS, FETSIM,
IDSIM3, PFSIM (which was run four times, once for
each of the wired-logic bridging fault models, and to-
taled), and BRIDGESIM. Notice that BRIDGESIM
is faster than the other simulators by roughly an order
of magnitude; the goal of creating a fast simulation
platform has been met successfully.

4.6 Limitations

While certainly an improvement in both speed and
accuracy with respect to other bridging fault simula-
tion algorithms, BRIDGESIM does have weaknesses.

The use of circuits that are completely represented

Paper 3.1

60

at the gate level and whose bridging faults exist only
between gate outputs restricts the applicability of this
simulator. There is no guarantee that all likely bridg-
ing faults on a any chip will occur only between gate
outputs (intragate faults being the chief example).
Table 3 clearly shows that only a minority (between
a quarter and a third) of actual bridging faults are
gate output shorts. It should be noted, however,
that shorts between gate outputs tend to be the most
probable type of bridge because these signals are usu-
ally routed over relatively large areas and are thus
prone to spot defects.

The scalability of this simulator can be limited by
the size of the lookup table for short-circuit voltages,
which can grow geometrically with both the num-
ber of gate types and the number of gate fanins. If
the number of cells in the library is very large, or if

the number of unique ways to drive ones and zeros
is very large, the lookup table for the bridging volt-
ages can become unwieldy. The gate input threshold
voltage table grows only linearly with the number of
gate types and gate fanins in the library and is not a
limiting factor.

The final limitation comes from possible errors in
the precomputed data that BRIDGESIM uses. There
are basic assumptions made when performing library
characterization for the determination of both bridg-
ing voltages and gate input threshold voltages that
can be violated in certain faulty cases.

The assumption made during the determination of
bridging voltages is that all of the inputs of both gates
driving the bridge are being driven to full rail volt-
age values. In most circumstances this is a valid as-
sumption, but when a bridge creates a tight feedback
loop that spans only one or two gates, it is likely
that the nodes in the loop are being driven to only
intermediate values. These intermediate values can
then appear on the inputs of a gate that is driving
the bridged node, thus violating the assumption that
only solid logic values appear at these gate inputs.

The assumption made in the characterization of
gate input logic threshold voltages is that only the
input being characterized is allowed to change; all
other inputs are held at the noncontrolling voltage
rail. When a bridging fault occurs between inputs of a
single gate, there will be two inputs changing instead
of just one, since the bridged nodes are equipotential
(in the case of a zero ohm short, and linearly related
for nonzero bridging resistances). Such a bridge in-
validates the precomputation of the gate input logic
threshold.

Another source of error in the precomputed data
is an incorrect assumption for the value of the likely
bridging resistance. If the resistance of the actual
bridging defect is significantly different from that as-
sumed during characterization, the simulator can pre-
dict incorrect results. By repeating the SPICE char-
acterization of the short-circuit voltages with a new
value of the bridging resistance, a more accurate table
can be created for the simulator to use.

5 Concluding Remarks

This work has shown that to predict the behavior
of a bridging fault correctly, two key steps to model
physical mechanisms must be taken: determining the
voltage at the bridging site by resolving the drive fight
between the bridged gates, and interpreting that volt-
age by comparing it to the logic threshold voltages of

each gate input connected to the bridged node. The
BRIDGESIM program uses precomputed values for
these voltages to obtain accurate values to feed into a
gate-level simulation platform. This technique deliv-
ers excellent throughput and accuracy, but is limited
by the scalability of the table lookup procedure and
the assumptions made during circuit-level character-
ization.

References

[1] C. C. Beh, K. H. Arya, C. E. Radke, and K. E.
Torku, “Do stuck fault models reflect manu-
facturing defects?,” in Proceedings of the IEEE
International Test Conference, pp. 35-42, Nov.
1982.

[2] V. V. Nickel, “The inadequacy of the stuck-at
fault model,” in Proceedings of the IEEE In-
ternational Test Conference, pp. 378-381, Nov.
1980.

[3] A. Pancholy, J. Rajski, and L. J. McNaughton,

“Empirical failure analysis and validation of

fault models in CMOS,” in Proceedings of the

IEEE International Test Conference, pp. 938-

947, Sept. 1990.

[4] P. C. Maxwell, R. C. Aitken, V. Johansen, and

1. Chiang, “The effect of different test sets on

quality level prediction: When is 80% better

than 90%?,” in Proceedings of the IEEE Interna-

tional Test Conference, pp. 358-364, Oct. 1991.

[5] F. Ferguson and J. Shen, “Extraction and sim-
ulation of realistic CMOS faults using inductive
fault analysis,” in Proceedings of the IEEE In-
ternational Test Conference, pp. 475-484, Sept.
1988.

[6] K. C. Y. Mei, “Bridging and stuck-at faults,”
IEEE Transactions on Compulers, pp. 720-727,
July 1974.

[7] M. Abramovici and P. Menon, “A practical ap-
proach to fault simulation and test generation for
bridging faults,” IEEE Transactions on Compul-
ers, pp. 668—663, Sept. 1985.

[8] J. M. Acken and S. D. Millman, “Accurate mod-
eling and simulation of bridging faults,” in Pro-
ceedings of the IEEE Custom Integrated Circuils
Conference, pp. 17.4.1-17.4.4, 1991.

Paper 3.1
861

[9] J. M. Acken and S. D. Millman, “Fault model
evolution for diagnosis: Accuracy vs. precision,”
in Proceedings of the IEEE Custom Integrated
Circuits Conference, pp. 13.4.1-13.4.4, 1992.

[10] G. S. Greenstein and J. H. Patel, “E-PROOFS:
A CMOS bridging fault simulator,” in Pro-
ceedings of the IEEE International Conference
on Computer-Aided Design, pp. 268-271, Nov.

1992.

B. Chess and T. Larrabee, “Bridge fault simula-
tion strategies for CMOS integrated circuits,” in
Proceedings of the ACM/IEEE Design Automa-
tion Conference, pp. 458-462, June 1993.

[11]

[12] C. Timoc, M. Buehler, T. Griswold, C. Pina,
F. Scott, and L. Hess, “Logical models of physi-
cal failures,” in Proceedings of the IEEE Interna-

tional Test Conference, pp. 546-553, Oct. 1983.

(13] R. E. Bryant, “COSMOS: A compiled sim-
ulator for MOS circuits,” in Proceedings of
the ACM/IEEE Design Automation Conference,

pp. 9-16, June 1987.

D. G. Saab, R. B. Mueller-Thuns, D. Blaauw,
J. A. Abraham, and J. T. Rahmeh, “Champ:
Concurrent hierarchical and multilevel program
for simulation of VLSI circuits,” in Proceed-
ings of the IEEE International Conference on
Computer-Aided Design, pp. 246-249, Nov.
1988.

[14]

(15] T. Lee and 1. Hajj, “A switch-level matrix ap-
proach to transistor-level fault simulation,” in
Proceedings of the IEEE International Confer-
ence on Computer-Aided Design, pp. 554-557,
Nov. 1991.

(16] W. Nagel, “SPICE2: A computer program to
simulate semiconductor circuits,” Ph.D. disser-
tation, Universily of California, Berkeley, 1975.

[17] J. M. Acken, “Deriving accurate fault models,”
Ph.D. dissertation, Stanford University, 1988.

[18] S. Millman and S. J. Garvey, “An accurate
bridging fault test pattern generator,” in Pro-
ceedings of the IEEE International Test Confer-
ence, pp. 411-418, Oct. 1991.

(19] J. Ferguson and T. Larrabee, “Test pattern gen-
eration for realistic bridge faults in CMOS IC’s,”
in Proceedings of the IEEE International Test
Conference, pp. 492-499, Oct. 1991.

Paper 3.1

62

(20] T. Niermann, W.-T. Cheng, and J. Patel,
“PROOFS: A fast, memory-efficient sequential
circuit fault simulator,” IEEE Transactions on
Computer-Aided Design, pp. 198-207, Feb. 1992.

[21] F. Brglez and H. Fujiwara, “A neutral netlist of
ten combinational benchmark circuits and a tar-
get translator in FORTRAN,” in Proceedings of
the IEEE International Symposium on Circuits

and Systems, Sept. 1985.

F. Brglez, D. Bryan, and K. Kozminski, “Com-
binational profiles of sequential benchmark cir-
cuits,” in Proceedings of the IEEE International
Symposium on Circuils and Systems, pp. 1929
1934, Sept. 1989.

(22]

(23] P. B. Cohen, “Using the tools,” in Octtools 5.1:
Part 1: User Guide (A. Casotto, ed.), Berkeley:
Electronics Research Laboratory, University of

California, 1991.

[24] A. Jee, “Carafe: An inductive fault analysis
tool for CMOS VLSI circuits.” Technical Re-
port UCSC-CRL-91-24, University of California
at Santa Cruz, Computer Engineering Depart-

ment, Feb. 1990.

[25] T. Niermann and J. Patel, “Hitec: A test gen-
eration package for sequential circuits,” Euro-
pean Design Automatlion Conference, pp. 214-

218, Feb. 1991.

