ACCURATE LOGIC SIMULATION IN THE PRESENCE OF UNKNOWNS

Susheel J. Chandra

CrossCheck Technology
2001 Gateway Place
San Jose, CA 95110

ABSTRACT

Logic simulation plays a very important role in the design
of digital systems. A good logic simulator must be capable of
accurately predicting signal values that occur in the actual
circuit. However, this is extremely difficult in the presence of
unknowns. Accurate logic simulation in the presence of
unknowns has been shown to be an NP-complete problem. In
this paper we present algorithms which use high-level
descriptions to simulate the circuit exactly. The complexity of
these algorithms, and the feasibility of their implementation is
also discussed.

1.1. INTRODUCTION

Logic simulation plays a key role in the design of digital
systems. For VLSI circuits, where design errors are very costly
logic simulation is an invaluable tool. A good logic simulator
must be capable of accurately predicting signal values that occur
in the actual circuit. This is extremely difficult especially in the
presence of unknowns. In most gate-level simulators, method of
handling unknowns always lead to pessimistic results in that
unknowns are erroneously assigned to some lines which should
have a logic value of O or 1.

It has been shown [1] that accurate logic simulation in the
presence of unknowns is an NP -complete problem. Chang and
Abraham proposed the use of high-level descriptions to alleviate
the problem. However, the algorithms presented in [1] resort to
the use of heuristics and thus in the worst case can be of
exponential complexity. They also present an approximate
algorithm and compare its performance and accuracy to exact
simulation. In this paper we will present linear time algorithms
that use high-level descriptions to perform accurate logic
simulation.

The remainder of this paper is organized as follows.
Section 2 demonstrates the unknown propagation problem with
the help of an example. In Section 3 we present three different
algorithms for accurate logic simulation and prove their
correctness. Section 4 deals with the complexity of these
algorithms and other feasibility issues.

1.2. Unknown Propagation Problem

The existence of unknown values makes the problem of
simulating a circuit precisely very difficult. In current gate-level
simulation, methods of handling unknowns always lead to
pessimistic results, because unknowns are erroneously assigned

Janak H. Patel

Coordinated Science Laboratory

1101 W. Springfield Ave.
Urbana, IL 61801

to some lines which should have logic value 0 or 1. As
mentioned earlier, it has been shown [1] that accurate logic
simulation in the presence of unknown values is NP-complete.
Figure 1 illustrates the problem. In this case a gate-level
simulation produces an output X, however a more careful
examination reveals that the output is always a 1. The circuit of
Fig. 1. is just a two input multiplexer with both inputs set to 1
and an X on the control line. In this situation, no matter what
value the control line takes on, the output of the multiplexer is
always al.

X

— .

1 —

—q

X

Fig. 1. Problem of unknown propagation in a gate-level simulation.

It is obvious that the problem occurs when two unknowns
originating from the same point reconverge at some gate. The
use of multiple unknown values and their complements
alleviates the problem [2] however, the number of distinct values
needed quickly becomes unmanageable. Our approach to the
problem uses high-level representations of the function modules
present in the circuit. In this paper we will consider different
boolean representations such as, sum-of-products, product-of-
sums, prime implicants etc., from a logic simulation stand point.
Using these representations we will develop algorithms for
accurate logic simulation in the presence of unknowns.

1.3. Algorithms

Logic simulators widely use the three-valued algebra
(0,1,x) to model the signal values in the circuit. More
sophisticated simulators use multiple values to accurately model
strengths of the signals. In this paper we will restrict ourselves
to the three-valued logic (0,1,X), where x denotes the unknown

Acknowledgement: This research was supported by the Semiconductor Research Corporation under Contract 88-DP-109.

CH2805-0/89/0000/0034$01.00 © 1989 IEEE

state i.¢., it is uncertain weather the value should be a O or a 1.
The following terms are used in the sequel.

DEFINITION 1: Let f be a boolean function of n variables,
Xy, ... %, where x;€ (0,1,x). Any implicant of f is termed a
cube. We use the notation o[i] to denote the i th coordinate of
the cube a.. This corresponds to the input x;. O

DEFINITION2: Let o and P be two cubes. Then their
intersection known as the cube intersection o N P is defined
using the coordinate intersection table below and the following
rule. &N B =@ if any coordinate intersection is &, else, 0. N B
is the cube formed from the respective coordinate intersections.

O

DEFINITION 3: A cube O covers a cube B, denoted B ¢ o, if and
onlyifanf=p. m]

In this section we will first give an algorithm to perform
forward implication using a sum-of-products or product-of-sums
representation and then give an alternate boolean representation
for a circuit to overcome the complexity of unknown value
propagation. Note that the given sum-of-products expansion
need not be in the simplest form known as a minimal sum, or the
most complex form known as the minterm expansion of f. We
will term this a disjunctive form (DF) of f. Let oy, ..., 0, be
the product terms in the given DF of f. Let B be the cube
corresponding to the current input assignment of f. Thus, if any
product term @; covers B, the output of f is 1. Also it is easy to
see that if the intersection of P with all product terms is &, then
the output of f is 0. If neither of the above two conditions are
satisfied, then this algorithm cannot correctly determine the
output and hence declares it as unknown. Algorithm 1 illustrates
the above procedure. In the dual case, where we are given the
product-of-sums expansion or conjunctive form (CF), o; is a
sum term or an alferm and the algorithm is very similar to
Algorithm 1.

EXAMPLE 1: If each gate in the circuit of Fig. 1 is treated as a
function module and Algorithm 1 is used to simulate the circuit,
it will incorrectly determine the output to be unknown.]

Thus given a DF of £, Algorithm 1 is inexact. In fact, any exact
algorithm using just a DF of f would have exponential
complexity. However it is possible to reduce this complexity by
keeping additional information. This is demonstrated by the
following example.

EXAMPLE 2: Consider the following DF for f .
f(ab.c.d)=acd +acd +bed

The three product terms of f are shown in Table L.

35

TABLEI

Tabular form of f
a b ¢ d | cube
1 - 1 acd
1 - 0 acd
- 1 1 | bed
Given a=1,b=1,c=0 and d=x, using Algorithm 1

f(1,1,0x)=x. This is because the two cubes, acd and bcd,
which are consistent with the input cube, ab¢ (i.e., BN o; #)
do not independently cover the cube abc .

ALGORITHM 1: Forward implication using a DF of f .

begin
intersect « null;
for each i€ (1,2,...,m} do
begin
if BPco; then return 1;
else if Bno; #D then intersect ¢« notNull;
end
if intersect =
else return X;
end

null then return 0;

If the values for a,b and c are substituted in the above
DF of f, the resulting expression is f =d +d = 1. However,
Algorithm 1 erroneously propagates an unknown value at the
output of f. We call this the consensus problem. Fig. 3 shows
the product terms of f on a Kamaugh map. If the consensus
term abC is present in the given DF of f, Algorithm 1 will
correctly determine the output of f under the constraints
a=1, b=1, c=0. Thus if we have the following Theorem.

THEOREM 1: Given the complete sum (sum of all prime
implicants) of f, Algorithm 1 correctly determines the output of

PROOF: Since all prime implicants of f are available to us, any
input combination which makes f a 1 must be covered by some
prime implicant. Also, if some input combination reduces all the
product terms in the complete sum of f to 0, then the output of
f must be a 0 since f does not have any other implicant. a

However, the complete sum is not the only way to reduce
the complexity of the problem. Let us consider an alternate form
of representation. Suppose both, DF’s of f and f are available
1o us. Let yy,...,7, be the product terms in the DF of f. If
after using Algorithm 1 on the DF of f, the value of f =X, we
apply Algorithm 1 on the DF of f. This may determine the
value of f to be 0 or 1, and the value of f can be deduced from
it. However, if the value of f = x, then the value of f is truly x.
Thus we have the Algorithm 2, and a theorem which proves its
correctness.

ALGORITHM 2: Exact forward implication using a DF of f and f

begin
intersect ¢« null;
for each ie {1,2,...,m} do
begin

if Bco; then return 1;
else if Pno; #J then intersect « notNull
end
if intersect = null then return 0;
else
begin
for each i€ {1,2,...,p) do
if BNy #J then return X;

return 1;
end
end
ab
00 01 11 10
00 {1 : 1)
K—Z— consensus term
N1 abc
01 (1 1)
cd
11
10 (1 1)

Fig. 3. Karnaugh map illustrating the consensus term.

THEOREM 2: Algorithm 2 correctly determines the output of f

PRrOOF: If f is null, all terms in a DF of f must evaluate to zero
ie, intersect null in the above algorithm. Similarly
if f is a tautology, all terms in a DF of f must evaluate to zero.
In Algorithm 2 we compare the cube B with both f and f, this
will accurately Getermine if £ is null, tautology or unknown. 0O

ExAMPLE 3: For the function in Example 2, 2 DF forf is
f=ab+cd +ad +bcd

The product terms of f and f are shown in Table II. The first
for loop of Algorithm 2 is exactly the same as Algorithm 1.
However, at the end of the loop if the value of the variable
intersect is notNull, Algorithm 1 returns an X, whereas
Algorithm 2 goes on to examine f. In this example, the
intersect § NY; = for each cube y; of f. Thus Algorithm 2
will return the correct output f = 1. a

From Theorems 1 and 2 we know that it is possible to
efficiently deduce the correct output of f_given either the
complete sum of f or any DF of both f and f. Also, given any

’

36

TABLE IT _
Tabular form of f and f

a b c d cube

1 - 1 acd
flr - o aéd

-1 1 | bcd

0 0 - - |a
f_ - - 1 1 cd

0 - - 0 |ad

- 0 0 1| bed

DF of f, there exist algorithms [3] to determine both, f and the
complete sum of f. Therefore the choice of representation is
based primarily on two issues. First, the computation time
required to compute f or the complete sum of f, and second,
the size of the complete sum compared to the size of f and f
taken together. Some of these issues will be discussed in more
detail in the following section.

1.4. Complexity Issues

All the algorithms presented in the previous section
involve searching tables representing different forms of the
given function. Therefore it is crucial that the table sizes remain
as small as possible. As mentioned earlier, it is possible to
perform simulation using either the complete sum of f, or DF’s
of both f and f. In general, it is not known which is the smaller
of the two. There exists functions which are well behaved
whose complements are of unreasonable size. Also, there exists
functions having an extraordinarily large number of prime
implicants. The following is an example of two such functions.

EXAMPLE 4: Consider the function

f =X1X3X3+ XaX X6+ X7XgX9 + X 10X 11X 12

The minimal DF of f has 81 terms whereas the complete sum of
f has only 4 prime implicants. Now consider the function

8 = X1XaXaXeXgX 10 + XX 3X4X6X8X 10 + XaX 5X6X5X 10

+ XexqxgX 10 + XgXoX 10+ X10%11

in case of g, the minimal DF of g has only 6 terms whereas the
complete sum of g has 63 prime implicants. O

The above two functions are special cases of two known worst
case functions. In the general form,
Cox

mn?

f =X Xy Xy + Xms1iXma2 " Xom oot Xnpem

is a function of _mn variables and has n product terms. The
minimal DF of f has m" terms [3], whereas the complete sum
of f has only n prime implicants. In case of g, the general
form is defined inductively as follows [4].

g1(x1)=x;

Ems1 X1 - o X 2ms1) =X2m8m X1y« - 2 Xomo1) + XomXoma1-

Thus g, is a function of 22—~1 variables and has n product terms.
It can be shown that the minimal DF of g, also has n product
terms whereas the complete sum of g, has 2" —1 prime
implicants.

Another interesting class of functions is that of parity
functions. In this case the complete sum consists of the entire
truth-table of the function. Thus for large parity trees the table
sizes will be considerable. However, due to the nature of the
parity function an unknown at the input must always propagate
to the output. Therefore, propagating values at the gate-level
will result in the correct output.

Fig. 4 is a plot of the number of terms in f and f taken
together, denoted as |f| +[f|, versus the number of prime
implicants for some ten input functions. These functions have
been implemented in some of the Berkeley PLA’s , [3] and can
be considered to be practical functions. All points below the 45
degree line in the plot of Fig. 4 represent functions for which the
number of prime implicants exceed |f| +[f[. In all cases
minimal DF’s of f and f were used. Points above this line
represent functions for which |f|+f | is greater than the
number of prime implicants. As is evident from the graph, for
most of the functions considered, | f| +{f| is greater than the
total number of prime implicants of f .

If however, a larger sample of functions is considered, the
trend seems to be exactly the opposite. Fig. 5 is a plot similar to
Fig. 4 for 55 random 10 variable functions with number of
minterms ranging from (0.1 x 2'°) to (0.9 x 219, It is interesting
to note that for the sample of functions considered, there seems
1o be a cut-off point after which|f| +| f| is always less than the
number of prime implicants of f .

For the eight outputs of the SN74181 ALU, | f| +[f|
ranges from 24 to 376. Data on the number of terms in the
complete sum is not available.

50
40
Ifl 30
+
|7l 204
10—
0 I I I T

0 10 20 30 40 50

Size of Complete Sum

Fig.4. | f| +|f| versus complete sum for 10 variable functions. Fig.5. | £l + !7| versus complete sum for random 10 variable functions.

We now look at the complexities of the algorithms
presented in the previous section. Let f be an n-input function
with m product terms in its given DF. Let p be the number of
product terms in the DF of f. It is easy to see that if the cover
and intersection operations can be performed in constant time
then forward implication is linear in the size of the table. Thus
the complexity of exact simulation using Algorithm 2 is
O (m+p).

1.5. Conclusions

This paper addressed the problem of accurate logic
simulation in the presence of unknowns. Algorithms to perform
exact simulation using high-level descriptions are presented.
The complexity of these algorithms is shown to be considerably
Jess than that of existing algorithms. An analysis of realistic
PLA's and some random functions is used to compare the
complexity of the two algorithms presented. Data on the
SN74181 ALU suggests that function blocks of similar size can
be easily dealt with. The feasibility of the approach is
demonstrated by a programmed implementation of the
algorithms, as part of a high-level test generation system.

REFERENCES

[1] H. P. Chang and J. A. Abraham, ‘‘The complexity of
accurate logic simulation,”” Proc. International
Conference on Computer-Aided Design, 1987.

2] M. A. Breuer, ‘‘A Note on Three-Valued Logic
Simulation,”” IEEE Transactions on Computers, pp.
399-402, April 1972.

[E)] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L.
Sangiovanni-Vincentelli, Logic Minimization Algorithms
for VLSI Synthesis. Kluwer Academic Publishers, 1985.

[4] C. McMullen and J. Shearer, ‘‘Prime implicants,
minimum covers and the complexity of logic
simplification,”” IEEE Trans. Comput., vol. C-35, pp.
761-762, August 1986.

1200

1000 — A

800 —

| £1

+ 600 —

Lfl
400

200 —

I I I I I
0 200 400 600 800 1000 1200

Size of Complete Sum

