Restricted Symbolic Evaiuation Is Fast and Useful

J. Lawrence Carter and Barry K. Rosen

IBM Research Division
P.O. Box 218
Yorktown Heights NY 10598

Full symbolic evaluation of large circuits with many inputs is combi-
natorially impractical, but restricted forms of symbolic evaluation are
enough for some important uses. This paper introduces a new method
of simulation with twe zillion and three values. The values that are
propagated by the simulation include the familiar 0, 1, and X, and also
a collection of named unknowns and their formal negations. Each value
fits in a single computer word. Applications of this restricted symbolic
evaluation include design rules checking for circuits with embedded
arrays and timing verification. This paper explores these two appli-
cations briefly. By carefully choosing rules for combining the two
zillion and three values, and the representions of the values, it is
possible to make simulation surprisingly efficient. This paper presents
two variants and an implementation of each. Both are fast; one is
faster but sometimes yields less information.

1. Introduction

Many steps in the design of modern computers involve gate-
level simulation [2], where the output lines of logic blocks (such as
NAND gates and LATCH primitives) are assigned logic values (0, 1,
and perhaps other values) based on the values held by the input lines
to the blocks. We assume that cyclic paths in the design are accom-
modated in the standard ways, such as using event-driven simulation
or breaking the cycles at latches and ensuring that no latch that has
a clock active is fed by another such latch [4]. Many uses of gate-level
simulation involve the simulation of lines whose values are unspecified
or not known at the time of simulation. In this paper, we introduce
a method for handling unspecified logic values called “simulation with
two zillion and three values” (denoted (2Z+3)-valued simulation).
Two variants of (2Z+3)-valued simulation are described: one is
faster; the other gives more information. We describe two important
applications. Finally, we describe implementations that show the
techniques are practical.

There are a number of known techniques for handling unspeci-
fied logic values in gate-level simulation. At one extreme is 3-valued
simulation, where all unknown lines are given the value X. In
3-valued simulation, one knows nothing about the possible relation-
ships between one X and any other. At the other extreme is full
symbolic execution [3], where unknown lines are initialized to distinct
values, and accurate information is maintained during the simulation
about how different computed values relate to each other. The
advantage of 3-valued simulation is speed - it requires only a small
multiple over the time required for 2-valued simulation. (For
example, in HSS [1] the multiple is 2.9.) The advantage of full
symbolic simulation is accuracy; however, determining the equiv-
alence of lines in a combinational circuit is an NP-complete problem,
and hence one cannot reasonably hope to find an efficient full
symbolic evaluation algorithm that can handle circuits with thousands
of gates.

Simulation with two zillion and three values lies between these
extremes, but falls distinctly within the practical realm. As with full
symbolic simulation, lines that are initially unknown are assigned

CH2805-0/89/0000/0038$01.00 © 1989 IEEE

Gordon L. Smith

IBM Data Systems Division
P.O. Box 950
Poughkeepsie NY 12602

38

Vijay Pitchumani
Syracuse University

ECE Department
Syracuse NY 13244

distinct mamed unknowns, a(1), a(2), and so on. In (2Z+3)-valued
simulation, the only symbolic values are the named unknowns and
their formal negations, -a(1), ~a(2), and so on. If the output of a
simulated logic block is not determinate (0 or 1) and cannot be
expressed as a symbolic value, then it is assigned the value X. Thus,
a NAND gate whose input lines have values 1 and a(17) will be given
the output value ~a(17), but the NAND of a(17) and a(23) will be
X. The name “two zillion and three” reflects the fact that there are
a large number of distinct named unknowns, plus their negatives, plus
the 0, 1, and X of 3-valued simulation.

Section 2 has the detailed rules for operating with two zillion
and three values. We will introduce two variants that differ in how
they evaluate certain expressions, such as a(17) AND -a(17).
Section 3 briefly explores applications to array rules checking and to
timing verification. For both applications, the number n of named
unknowns is large enough that enumerating the 2" possible assign-
ments represented by the named unknowns is out of the question.
Full symbolic evaluation, with complex expressions that treat the
symbolic values as variables, is also out of the question.

The remaining sections give implementations of (2Z+3)-valued
simulation. The simple variant (Section 4) is faster; the refined variant
(Section 5) sometimes yields more information by computing fewer
X values. Both avoid the high costs of full symbolic evaluation. The
variants share the same representation of values, so the techniques can
be intermixed. In this representation, any value is represented by a
single computer word, and operations are implemented with fast
arithmetic and bitwise operations. In order to represent each value
conveniently within a single computer word, the number of named
unknowns (called a zillion here) must be less than a large constant
determined by the word size and by the details of the representation.
When our representation is used on a computer with 32-bit words, a
zillion is 227 — 2. Applications are likely to require tens, hundreds,
or perhaps thousands of named unknowns. The zillion provided here
will allow for many millions.

2. Logic Values

Rules for propagating the two zillion and three values through
AND and NOT blocks are tabulated in Figure 1. The rules for other
Boolean operations (e.g., NAND, NOR, and OR) can be derived from
these. The tables also indicate how latches are handled; latches and
memory arrays will be discussed later in this section. In the tables,
a(i) and a(j) represent any of the named unknowns and -a(i) and
~a(j) represent their negatives. Intuitively, we propagate a symbolic
value through a gate when all the other inputs to the gate take on the
noncontrolling value.

In one variant of (2Z+3)-valued simulation, any combination
of symbolic values yields X. We will call this variant the ‘‘simple
rules”. With the available values, the simple rules give the only
reasonable way to fill in the table when i # j, as in ~a(5) AND a(9)
= X. However, when i = j, rules like -a(9) AND a(9) = 0 would



sometimes provide more information, since fewer X values would be
produced. This insight motivates the “refined rules” explained in
Section 5. Figure 2 illustrates the advantages of the refined rules for
propagating symbolic values through logic that implements the XOR
function with NAND gates.

AND 0 1 X ag) -a(j)
0 0 0 0 0 0
1 0 1 X a(j) -a(j)
X o x X X X
ai) 0 a() X X X
~a(i) 0 -al) X X X.
NOT LATCH
0 1 old value
1 0 new data
X X CX:
a(i) ~a(i) . X
~a(i) a(i) DX

Operations on simulated values. The behavior of
a latch is described as a function of its governing
clock, assuming that 0 means an inactive clock
while 1 means an active clock. Dotted boxes
indicate where the simple rules (shown here)
sometimes yield less information than the refined
rules (explained in Section 5).

Figure 1.

a(9) D’T

=1 a(9)

a(9)

The refined rules for (2Z+3)-valued simulation
can propagate a symbolic value through logic
implementing the XOR function. The simple rules
would compute X for the values shown in boxes.

Figure 2.

Latches are handled in a straightforward manner under the
simple rules: if the governing clock is inactive, the latch retains its old

value: if the clock is active, the latch takes on the value of the data
input; and otherwise (when the clock is not known to be 0 or 1), the
latch takes the value X. Under the refined rules, a test is made to see
if the old value of the latch is the same as the data input. If so, that
value is retained no matter what value the clock takes on.

A READ operation of an array can be simulated by first exam-
ining the values on the address lines. If each address line value is
determinate (either O or 1), then the contents of the corresponding
array cell are placed on the data output lines. Otherwise, X’s are
placed on the output lines. (It would be consistent with the spirit of
the refined rules to make a further check to see if all the array cells
that might match an indeterminate address contained the same value,
and, if so, to output that value. However, this test would be very
expensive to implement and unlikely to yield improved information.)

To simulate 2 WRITE operation, again the address lines need
to be examined. If each address line value is determinate, then the
values on the data lines are written into the appropriate memory cell.
Otherwise, we set to X each memory cell whose address matches the
determinate address line values. For example, if there are four
address lines and their values are 0, X, 1, and a(17), then the array
locations 0010, 0011, 0110, and 0111 are set to X. Under the refined
rules, an additional check is made to see if the data lines match the
array cell contents; if so, then no change is made to the cell.

Section 4 implements the simple rules, which are adequate for
verifying many array initialization protocols. Section 5 implements
the refined rules. For brevity, both sections consider combinational
logic only. Latches and arrays may be implemented by straightfor-
ward coding of the foregoing definitions, without using any special
properties of the representation.

3. Applications

In many VLSI design environments, there is a design rule to the
effect that it must be possible to initialize each array to contain any
desired data. It may not be at all obvious whether a particular circuit
satisfies the rule, particularly when an array is embedded in the midst
of the circuit. Thus, the designer may need to provide an array
initialization protocol that tells how to initialize the array. The rules
checking system would then need to verify the correctness of the
protocol. The protocol specifies what values are to be applied to
primary inputs and latches at each time step of the initialization, as
well as the method of pulsing the clocks. The values O and 1 are
actual logical values that will be applied. Named unknowns represent
the arbitrary data (e.g., output of a pseudo-random pattern generator,
or actual test patterns) that one hopes will end up in the array. The
X’s are unspecified by the protocol, and can be used either in situ-
ations where the designer does not care what value is applied, or
where the value may be changing from a 0 to a 1 or vice versa.

Similarly, if there is a design rule to the effect that it must be
possible to output the contents of each array, then one needs to
specify an array logout protocol. Again, it may not be obvious that the
protocol is correct. It will not be pursued in this paper, but logout
protocols can be verified by techniques similar to those for initializa-
tion protocols.

These same two requirements - that it must be possible to
initialize and to read out memory elements - commonly arise in a
different context. If we think of the internal latches of a design as
being an array, then the requirements say that it must be possible to
independently set and read the latches.



Verifying an Array Initialization Protocol

Given an array initialization protocol, (2Z+3)-valued simulation
can be used to verify that the protocol succeeds in initializing the
array as desired. This is done as follows:

1. The array is initialized to X’s.
2. The protocol is simulated.

3. The array contents are examined. If any cell contains a 0 or a
1, it means that it was not possible to read arbitrary data into
that cell, so the protocol fails the rules check. If any cell contains
X, the protocol also fails. (This failure mode has a special
significance discussed later in this section.) Otherwise, all the
values in the array are symbolic values — but a further test
should be made that each named unknown appears at most once
(in either its positive or negative form). This test ensures that
all the bits can be set independently.

Assuming the protocol passes the above tests, one now knows the
exact mapping from the test data to the array contents. For example,
one might know that array cell 13 holds the data put on the 5-th data
line on the 22-nd clock cycle. This information can be used to bypass
future simulations of the initialization protocol.

Suppose, on the other hand, that the protocol fails. If the only
failures are caused by cells containing X, then it is possible that the
protocol is really correct but depends on logical equivalences not
captured by our simple propagation rules. One possible course of
action would be simply to reject the protocol. Another possible
course would be to use a more detailed analysis when the only failures
are caused by cells containing X. In this latter case, the use of
(2Z+3)-valued simulation first has still accomplished something: the
more detailed analysis can be restricted to examining the computa-
tions that write an X into a cell of the array.

An Application to Timing Verification

Complex operations sometimes require that a latch hold its
value, whatever that value is, throughout several clock cycles. A
polarity hold latch with an arbitrary initial value a(1) will continue to
hold a(1) if it is clocked with the same value a(1) on the data input.
Thus, the requirement could be met by gating the latch’s value back
to its data input line during the relevant cycles. (This implementation
avoids the necessity of inhibiting the clock.) For verifying that timing
requirements are met in such a situation, the data in the latch may
need to be named but do not need to be known. The refined rules
of (2Z+3)-valued simulation can verify that latches containing
symbolic values do indeed hold these values for the required number
of clock cycles.

If one attempted to verify persistence over several clock cycles
using 3-valued simulation, then even if one found that a particular
value (0 or 1) remained in the latch for the required duration, one still
would not be sure whether this was just a coincidence that relied on
the particular setting of other lines in the circuit. Thus, one might
need to try all 2" assignments to the n input lines to achieve the effect
of one round of (2Z+3)-valued simulation.

4. Implementation of the Simple Rules

We assume that the target computer has two’s-complement
arithmetic with 32-bit words. (Once the techniques are understood,
it is not hard to adapt them to other architectures.) We represent each
value by a word, which can be considered to be a signed integer.
Figure 3 gives representations for the values 0, 1, X, and a(i) and
~a(i) for i ranging from 1 to 227 — 2. There are two alternate
representations for the value X.

Value Representation
(as integer) (as Hex string)
0 0 00000000
1 -1 FFFFFFFF
a(l) 2842 10000002
-a(l) 228 +3 10000003
.. et .
a(2? - 2) 22— 4 1FFFFFFC
~a(2¥ - 2) 2% -3 1FFFFFFD
X 22 -2 1FFFFFFE
X (alternate) 22 -1 1FFFFFFF
Figure 3. Representations of two zillion and three values.

When viewed as integers in the computer’s arithmetic, the
representations of all indeterminate values (i.e., X and the symbolic
values) lie between 228 4+ 2 and 2% — 1, inclusive. This range of
numbers was carefully chosen so that there is an efficient way to
determine whether there is more than one indeterminate value among
a set of up to 4 values. Specifically, if the representations of 4 or
fewer values are added together, and at most one of the values was
indeterminate, then the result will be at most 22 — 1. On the other
hand, if 2 or more of the values are indeterminate, then the sum of
their representations will be at least 2 x (2% 42) -2 = 229 4 2.
Thus, a set of 4 or fewer values contains at most one indeterminate
value if and only if the sum of the representations is less than 2%.

Implementations of the AND gate with up to four inputs, and
of the NOT gate, are shown in Figure 4 and Figure 5.

R := BitwiseAND(U,V,...)
if (R > 0) then /* At least one argument is indeterminate. */
do S:=U+V+..
if (S >2%9) then R := Xrep /* Xrep = 22 - 2%/

end
Return (R )
Figure 4. Implementation of simple AND with at most four
inputs U,V,... .
if(U>0)

then R := BitwiseXOR(U,1) /* exclusive-or */
else R := BitwiseXOR(U, —1)
Return (R)

Figure 5. Implementation of NOT with input U.




5. Implementation of the Refined Rules

The refined rules should be as informative as possible, given that
the output value of each gate is to be one of the two zillion and three
values. To achieve this goal, a p-input AND gate cannot be repres-
ented as a tree of (p — 1) two-input gates. No such tree will make
both AND(a(5),X,~a(5)) = 0 and AND(a(5),-a(5),X) = 0.

This section defines and implements the refined rules for a
p-input AND gate. Other logic operations such as OR, NOR, and
even XOR are treated similiarly. The truth table for NOT is the same
here as in Figure 1, so the implementation is the same also.

Consider any AND gate G. Let L be the list of G’s input values.
Remove duplicate values from L to produce a set S. If there is a value
of i such that S contains both a(i) and -a(i), then G’s output is 0.
Otherwise, G’s output is computed by applying the simple rules to S.

A direct implementation of the above definition of the refined
AND operation would be slow, but Figure 6 implements this opera-
tion efficiently. For clarity, we treat the number p of inputs as a
variable and use variables i and j that range up to p in loops. Because
the number of values of p used in each technology is small, a separate
version with unrolled loops should be compiled for each value of p.
(The common special case of two inputs could then get additional
improvements.) The procedure of Figure 6 computes AND(...) using
at most p(p + 1)/2 bitwise operations and some arithmetic. At most
3p(p + 1)/2 + 1 tests are performed. We count only explicit tests,
not tests against p that terminate loops, since the latter will not appear
after loops have been unrolled. The general process exploits the
representation of values so as to handle the rule for combining
matched positive and negative values without the cost of determining
which of the two values is positive and which is negative. The general
process also organizes the search through pairs of values carefully.

R:=0
doi:=1top
U := (i-th input value)
if (U # —1) then
do if (U = 0) then Return ( 0 )
if (U > Xrep)
then R := Xrep
else do R := BitwiseOR(R,U)
do ji=i+ltop
V := (j-th input value)
if (V# —1)then
do N := BitwiseXOR(U,V)
if (N =1) then Return (0 )
if (N #£0) then R := Xrep
end

end
end
end
end
if (R # 0) then Return ( R ) else Return (-1)

Figure 6. Implementation of refined AND with p inputs.

Thanks to the fact that the simple and refined calculations share
the same representation of the two zillion and three values, it is
possible to get the same results as the refined calculations without
actually doing them at each gate. At any gate with just two inputs,

41

the refined calculation tailored for this number of inputs can be done
as a matter of course: it takes only about twice as long as the simple
calculation. At any gate with more than two inputs, on the other
hand, we perform the simple calculation first and then test whether
the output is X. If it is not X, then there would be nothing to gain
by a refined calculation. If it is X, then we perform the refined
calculation before continuing to the next gate. For gates with at most
four inputs, the simple calculation followed by the test for X entails
a total of at most three tests. This is much less than the 19 (or 31)
tests that the general refined calculation in Figure 6 may require for
a gate with three (or four) inputs.

6. Some Final Words

We have described simulation techniques that, to a limited
extent, keep track of distinct unknown values. We have given appli-
cations and implementation methods to show that simulation with two
zillion and three values is useful and practical. To put the speed of
(2Z+3)-valued simulation into perspective, it is helpful to recall that
event-driven logic simulators often run at about 1000 or 2000 events
per second on machines that run at about a million instructions per
second [5]. Processing an event entails performing 500 to 1000
machine instructions, some of which are devoted to evaluation of logic
gates. Even in the most expensive common case (that of a 4-way
AND under the refined rules), our psendocode would require fewer
than 200 instructions in place of whatever instructions would normally
be devoted to gate evaluation. Processing an event under
(2Z+3)-valued simulation would entail performing at most 700 to
1200 machine instructions, so the rate of processing could decrease,
but only moderately. At worst, the rate might change from 1000 (or
2000) events per second to 800 (or 1400) events per second. In the
applications discussed here, the moderate decrease in rate buys a
major increase in the amount of information.

The overhead of event-driven simulation is high enough to
justify using the refined rules as a matter of course. On the other
hand, under a low-overhead simulation strategy (for example, see
{11), a significantly higher gate-evaluation rate might be achieved with
the simple rules. The two variants of (2Z+3)-valued simulation
represent different choices in the tradeoff between detail of informa-
tion provided and speed of simulation. Other choices are also
possible, and might be advantageous for further applications.

References

1. Z. Barzilai, J.L. Carter, BK. Rosen, and J.D. Rutledge, “HSS -
A High-Speed Simulator”, IEEE Transactions on Computer-Aided
Design, Vol. 6, Num. 4 (July 1987), 601-617.

2. M.A. Breuer and A.D. Friedman, Diagnosis and Reliable Design
of Digital Systems, Computer Science Press, 1976.

3. J.A. Darringer, “The Application of Program Verification Tech-
niques to Hardware Verification”, Proc. 16th ACM-IEEE Design
Automation Conf. (June 1979), 375-381.

4. E.B. Eichelberger and T.W. Williams, **A Logic Design Structure
for LSI Testability”, Proc. 14th ACM-IEEE Design Automation
Conf. (June 1977), 462-468.

5. J. Werner and R. Beresford, “A System Engineer’s Guide to
Simulators™, VLSI Design, Vol. 5, Num. 2 (Feb. 1984), 27-31.



