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Abstract

This paper addresses the problem of flip flop selec-
tion for partial scan in sequential circuits. In particu-
lar it addresses some of the shortcomings of the popu-
lar flip flop selection methods, based on cutting cycles
present in the graph of the circuit structure. Previous
approaches assume that cutting all cycles makes the
circuit totally testable, which is not always true. In the
proposed approach, first subsets of flip flops are formed
based on cycles in the S-graph and flip flops with self-
loops. Flip flops are selected from these subsets based
on a testability measure which uses an approzximate
valid state analysis. Once a flip flop is selected from a
subset, testability measures may indicate the need for
more flip flops, thus possibly selecting more flip flops
than required for minimum cycle cutting. The goal is to
select the fewest number of flip flops required to obtain
high fault coverage for all partial scan circuits. Fz-
perimental results on the benchmark circuits show that
a test generation efficiency near 100% is achieved for
most circuits.

1 Introduction

Partial Scan Design is a design for testability(DFT)
method which has been proposed to improve the testa-
bility of sequential circuits. It is an attractive DFT
solution compared to the full scan approach, since it
has low area and performance overhead. It allows a
designer to trade off test generation complexity and
fault coverage, with area and delay overheads. The
area overhead incurred using partial scan is the area of
additional logic in the scan latches and routing of the
scan chain. The overhead can be approximated by the
number of flip flops included in the scan chain. The
goal in this paper, is to provide the highest fault cov-
erage for a circuit, by scanning the fewest number of
flip flops. Fewer flip flops in the scan chain implies a
lower area overhead.
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1.1 Previous Work

Previous research on selection of flip flops for par-
tial scan, can be classified into three main categories:
testability measure based, test generation based, and
structure based methods. Additional methods have
been layout based, re-timing based, targeted at sharing
functional logic in the scan chain for reduced overhead,
or test time reduction by reordering the scan chain.

Testability measures have been used as the first
measures [1] to guide flip flop selection. The primary
problem associated with testability measure based
methods, is that the fault coverage obtained for com-
plex circuits may not be high. Another shortcoming of
simple measures [2, 3] is that they may not correlate
with test generator complexity, hence requiring more
scan flip flops to achieve desired coverage. More com-
plex measures based on test generator execution times
[4] try to avoid the above, but can be computationally
expensive.

Test generation based methods use information from
a test generator to aid in the selection of flip-flops.
Methods which use an initial pass of the test generator
to drop easy to detect faults [5, 6] would be impractical
for large circuits. Other methods of targeting specific
faults [7] using a test generator can be computationally
expensive. Unjustified states and unpropagated fault
effects have also been used for selection of flip flops
[6, 7]. Another method (8], which combines test gener-
ation, structure and testability based approaches can
be expensive for large circuits. This method does not
take into consideration the effect of scanning a flip flop
in the circuit, on subsequent selections.

Structure based methods have been more
widespread, since test generation complexity is con-
sidered to be exponential in the length and number of
cycles in a circuit and linear in its sequential depth
[9]. Subsequently, the idea of cutting cycles in a cir-
cuit, ignoring the self loops, has been mapped into a
graph theoretic problem of finding the minimum feed-
back vertex set. A number of papers [10, 11, 12, 13]
have proposed algorithms to find a near minimal or



the minimal subset of flip flops to cut all cycles. How-
ever, according to [5] it may not be necessary to cut
all cycles in a circuit to test some circuits fully. This
idea has been used for scan selection [14, 15], to selec-
tively cut cycles based on reachable states. However,
the testability measure these methods were based on is
greatly inaccurate for circuits with large cycles. If just
one flip flop is scanned from a large cycle, the cycle is
declared as having all partial states reachable, which is
not always true. Secondly, cutting all cycles does not
detect all faults for some circuits [5]. In this paper, we
give results of selection for circuits having large cycles.
We also address the problem of low coverage in circuits
with no cycles.

We use valid state analysis to evaluate the testabil-
ity of the circuit. This is based on the work by Marchok
et al. [16], who identified that density of encoding can
be used as one of the measures for evaluating test gen-
eration complexity. The density of encoding (ED) can
be expressed as

Ep=L

5 M
where V' is the number of valid states, and n is the
number of flip flops in the circuit. The density of en-
coding for circuits with a large number of flip flops is
typically far less than one.

Structure based methods theorize that test gener-
ation complexity is exponentially related to the size
and number of cycles. If a cycle of length k has 2%
valid states, then it would not cause many backtracks
in the test generation process. If another cycle had
just one valid partial state, then it would lead to nu-
merous backtracks. Hence one should cut the latter
and not the former cycle. Selective cycle cutting is
performed in this manner. However, if the number of
states in the cut cycle does not increase significantly,
another flip flop from the remaining subset may need
to be scanned. Thus, flip flops from cut cycles should
not be dropped from further consideration.

1.2 Contribution

We propose a technique of scanning flip flops using
valid states analysis of flip flop subsets in the circuit.
Previous methods [14, 15| assume that cutting a cy-
cle makes the cycle totally testable. This assumption
can be inaccurate for large and complex circuits, where
several flip flops may have to be selected from just one
cycle to make it testable. In such complex circuits,
minimal cycle cutting will not be sufficient to obtain
high fault coverage.

The proposed approach differs from previous meth-
ods in that, the cycles are not the primary focus of the
testability analysis. Our emphasis is on
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¢ Coding density of a subset of flip flops, which may
be part of a cycle or a collection of flip flops with
self loops

e Scaling the approach to large circuits.

The method tackles the problem of handling large sub-
sets, by breaking them into subsets of smaller size. Per-
forming the testability analysis iteratively allows us to
get a more accurate selection of flip flops.

This paper is divided into the following sections:
Section 2 covers some of the previous work and some
definitions; Section 3 describes the flow of the selection
process; Section 3.1 describes how logic simulation is
used to obtain the valid states in a circuit; Section 3.2
describes how subsets are formed, Section 3.3 describes
the testability measures used for flip flop selection; Sec-
tion 4 compares our method with previous approaches;
and we conclude in Section 5.

2 Background

We cover some definitions and notations which are
used in the remaining part of the paper. Some of the
following definitions have been taken from work by D.
Xiang et al. [14].

Definition 1: A state is an assignment of boolean
values { 0, 1 } to the outputs of flip flops. The reset
state is a state which is reachable from every other
state.

Definition 2: A state is called a valid state if
it is reachable from a reset state; a state is called an
invalid state if it is not reachable from a reset state.

A valid state can be justified using only the pri-
mary inputs of a circuit, whereas justification of invalid
states leads to backtracks in the process of test gener-
ation. Logic simulation with pseudo-random inputs is
used to generate valid states for a circuit.

A cycle of length k has 2* possible states. If each one
of these states in the cycle is valid, very few backtracks
would be needed. Hence, if one were to make all partial
states valid for every subset, the number of backtracks
would be significantly reduced.

Definition 3: The vertices of a S-graph of a se-
quential circuit, are the flip flops of the circuit. There
exists an edge from vertex u to vertex v in the S-graph
if there exists a combinational path from flip flop u to
flip flop v in the circuit.

If an edge starts and ends at the same vertex v then
it is called a self loop. Sub-circuits containing flip
flops with self loops can increase the test generation
complexity significantly. In some cases test sequence
lengths can be exponential in the number of flip flops
with self loops (e.g. counters). Practical circuits con-
tain numerous flip flops with self loops. In cycle cutting



based schemes, flip flops with self loops are ignored be-
cause cutting all cycles would require including all such
flip flops in the scan chain. We identify sub-circuits
with flip flops having self loops, which are not part of
any cycle, and consider them for scan selection.

Definition 4: A strongly connected compo-
nent of a directed graph is a subgraph, such that any
two vertices in the subgraph have a cycle in common.
The strongly connected components of a graph can be
found in linear time using a depth first search based
algorithm [17].

Definition 5: Assume a state is an n-tuple of sig-
nal values (v, vs,...,v,) where n is the number of flip
flops in the circuit and a partial state is a k-tuple of
signal values (vi,,vi,,...,vs,) , where iy,i2,...,% €
{1,2,...,n} and k < n. A partial state is called a
valid partial state if there exists a valid state which
contains the partial state. A partial state is called an
invalid partial state, if no valid state contains the
partial state. A State Mapping maps a state to all
subsets in the circuit.

Definition 6: Density of Encoding [16] of a cir-
cuit is defined as Zlf;, where n is the number of flip flops
in the circuit, and V is the number of valid states of
the circuit.

3 Methodology

The methodology followed by our approach selects
the fewest number of scan flip flops required to obtain
the highest fault coverage and close to complete test
generator efficiency (near 100%). We use a testability
measure based on valid state analysis of flip flop sub-
sets to determine scan flip flops. Flip flop subsets are
formed based on cycles and flip flops with self loops
in the S-graph of the circuit. Logic Simulation is per-
formed to identify the valid states in the circuit. State
mapping is then performed based on the states which
have been reached by the simulator (as described in
Section 2). The testability measure for each subset is
updated, and the potential improvement in testability
obtained by scanning each flip flop is computed based
on the states reached during logic simulation. The flip
flop which would provide the maximum improvement
in testability is selected for inclusion in the scan chain.
After a flip flop is selected, it is dropped from all sub-
sets to which it belongs. The output of the scanned flip
flop is considered as a primary input, and it’s input as
a primary output for the purpose of logic simulation
and subsequent test generation.

The sequence of logic simulation and scan selection
is repeated until all partial states are valid for each
subset, or if the user defined limit on the number of
scan flip flops is reached. More than one flip flop may
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Figure 1: Partial Scan methodology

be scanned in each iteration, using a dynamic heuris-
tic to determine the number of flip flops to scan. This
iterative loop, as illustrated in Figure 1, has the advan-
tage of being able to stop scanning flip flops when the
testability of the circuit cannot be improved on further.
This provides the designer with an upper bound on the
number of flip flops to include in the scan chain. A
number of scan selection methods require the designer
to give an upper bound on the number of flip flops to
scan as a parameter. These methods are impractical
as they require the designer to perform a number of
iterations of the test generator and the scan tool in an
attempt to come up with a sufficient number of flip
flops required for high coverage.

The remaining part of this section describes the enu-
meration of valid states using logic simulation, the
method of forming subsets, and the testability mea-
sures.

3.1 Enumeration of Valid States

Logic Simulation is used to estimate the number of
valid states of a circuit as in [14]. The valid states
of a machine can be easily estimated by logic simula-
tion using random input vectors. If the synchronizing
sequence or reset state is given, we start the simmila-
tion from the reset state of the circuit. Otherwise, all
flip flop values are considered to be unknown at the
beginning of the simulation.

We use bit parallel logic simulation to find valid
states of the circuit. Since we can start the simula-
tion from 32 different initial states, we expect to reach
more valid states than starting from one initial state.
In subsequent iterations, the states of the circuit at
the end of the previous iteration are used to start the
simulation.

The maximum number of new states a circuit can
reach if the circuit is simulated for T time-frames is
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Figure 2: Subset Formation in a circuit

32 - T. Logic simulation is done for 200 time-frames
within each iteration. Hence, we can traverse a max-
imum of 6400 new states between iterations. For a
number of circuits for which the valid state space is
very large, or the flip flops are many in number, we will
not reach all valid states. The states which are reached
using logic simulation are easily justifiable using a test
generator. States which are hard to justify, add to test
generation time and complexity. Since we do not reach
hard to justify states, the states reached correlate to
the states reachable using a test generator. However
there are many states which a test generator can reach,
but are not reachable using a pseudo-random logic sim-
ulator. Unlike cycle cutting algorithms we do not cut
all cycles, particularly cycles with a large number of
valid states. In addition, the number of valid states
used is only a heuristic for selecting the scan flip flops
and therefore any reasonable estimates on their mea-
sure are adequate for our purpose.

3.2 Subset Formation

Subsets are formed based on cycles and flip flops
with self loops in the circuit. First, the S-graph of the
circuit is extracted from the net-list in linear time, and
subsequently strongly connected components of the S-
graph are identified [17]. An approximate algorithm is
used to enumerate cycles (ignoring self loops) within
each strongly connected component. Each enumerated
cycle forms a subset. Note that the subsets are not
required to be disjoint. Alternately the subsets could
be determined based on fan-in cones of each flip flop.
This approach has not been studied in this paper.

It has been observed that counters and flip flops
with self loops can significantly increase test genera-
tion complexity [10]. We also form subsets which in-
clude flip flops with self loops. A flip flip with a self
loop which does not belong to any subset forms a new
subset. A flip flop with a self loop is added to a subset
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if an adjacent flip flop with a self loop is already in that
subset. These subsets can be formed in linear time. In
Figure 2, subsets {1, 2, 3}, {1, 2}, {2, 3}, are obtained
using cycle enumeration, and {4, 5, 6} is obtained us-
ing the adjacency method targeting flip flops with self
loops.

The total number of possible valid states for a sub-
set of size 40 is of the order of 10!2. Cycles of this
size are numerous in the large ISCAS benchmark cir-
cuits. Reaching these many states within one iteration
is too costly. In our method, where a maximum of 6400
states can be reached in an iteration, large subsets can
incorrectly bias our selection. If all partial states for
such a large subset were valid, verifying this using logic
simulation is too expensive. Hence to make the prob-
lem tractable for large circuits, we break large subsets
into smaller sizes such that the root mean square de-
viation of the new subset sizes from a target size(12 -
determined empirically) is minimum. In some circuits,
all flip flops of a large subset are hard to control and
are required to activate a fault or propagate a fault
effect. Our heuristic of breaking large subsets may de-
clare such a circuit to be fully testable prematurely.
All partial states may be declared valid only for bro-
ken parts of the large subset, but not the entire subset.
This can be remedied by increasing the target subset
size for broken subsets.

3.3 Partial Scan based on Valid States

We use a testability measure based on valid states to
evaluate the testability of flip flop subsets in a circuit.
The state information obtained using logic simulation
described in Section 3.1 is used to select the flip flops
for inclusion in the scan chain.

As stated before in Section 1.1 if a subset has a high
density of encoding, it would lead to a fewer number
of backtracks during ATG than a subset with a lower
density of encoding. If there are a number of cycles and



self loop based circuits with all possible partial states
being valid, then the testability of the circuit should
be good. Each state reached in the logic simulation is
mapped to the subsets in the circuit as described in
Section 2. The testability measure for each flip flop f
is evaluated as:

T(H= Y. T(S) (2)
Vi, s.t. f€S;
k; .
Ay -l if k; < 12
T(S) =3 (k-11)-fgy -1 Hk>12 ()
0 if T(S:) <0

where 12 is an empirical constant, f(S;) is the number
of valid partial states obtained for subset S; obtained
through logic simulation, and k; is the size of the sub-
set.

The testability measure reflects the possibility of en-
tering invalid states in the process of test generation.
The measure is biased towards subsets of size less than
12. We reduce the effect of the large subsets, because
the number of partial states reachable in logic simu-
lation are far fewer than the possible valid states of
the subset. In test generation terms, if a significant
number of partial states are valid for a pseudo-random
input logic simulator, the test generator can backtrack
to one of these states and easily justify it.

The testability improvement potential (TIP) mea-
sure for each node is used to evaluate potential testa-
bility improvement of the circuit if the node is chosen
to be the scan flip flop. The TIP measure for each flip
flop is:

TIP(f) =

>

Vi, s.t. fE€St

T(Si) ki 4)
In each iteration, the node with the largest TIP mea-
sure is chosen as a scan flip flop. More than one flip flop
may be selected in one iteration, to speed up the selec-
tion process. A dynamic heuristic is used to determine
the number of flip flops to scan in each iteration. This
measure takes into account the number of non-trivial
strongly connected components(i.e. size greater than
one), self loop based subsets as described and their re-
spective sizes. Since cycles can only exist within SCC'’s,
several flip flops with the largest TIP measure in each
SCC can be selected. However, it could happen that
small SCC’s do not reach all valid states, due to the
limitations of logic simulation. To avoid scanning flip
flops from SCC’s or acyclic sub-circuits the following
heuristic is followed.

Num_Scan = [0.1- Largest_SCC

324

Maz_from_one_.SCC = [ Num_Scan ]

Num_Large SCC

In each iteration we scan up to 10% of the size of the
largest SCC or acyclic subset at a time. The param-
eter Maz_from.one_.SCC ensures that the selection
is distributed across all SCC’s. The dynamic testa-
bility measure ensures that the selection of flip fiops
within an SCC is intelligent. Num_Large_SCC refers
to SCC’s or acyclic subsets which have more than 8
elements and does not have all partial states valid.

>
G

SCC3

Figure 3: SCC’s in an S-graph

Example 1: Let three SCC’s shown in Figure 3
represent a circuit, where the sizes of each SCC are 20,
10 and 5 respectively. Num_Large_.SCC in this case
would be 2. The maximum number of flip flops scanned
in the first iteration would be 2 and the maximum
number of flip flops scanned from each SCC would be

Num_Scan l'g_'l =1
Num_Large_SCC 21 7

The following procedure describes the steps involved
in scanning flip flops using valid state analysis. The
conditions for selecting a limited number of flip flops
from the same strongly connected component is omit-
ted for clarity.

Procedure 1:

1. For each subset S;, Number of valid partial
states f(S;) « 0;

2. Perform logic simulation;
3. For each state @Q; in the states reached, do

(a) Perforn} state mapping of @; to partial
state @; for each subset Sj;
(b) if Q; is a new partial state for S;,
f(S:) « f(Si) + 1
. For each subset S;, calculate the testability
of the subset using equation 3.

. For each flip flop f, calculate the TIP mea-
sure using equation 4;



6. If the TTP measure for each flip flop is 0, then
end the Procedure;

7. Choose the flip flop fs with the largest TIP
as a scan flip flop.;

8. For each subset S;, such that f; € S;;

{a) Decrease the TIP measure for each node
in the subset by k; - T'(5;);
(b) Si « [Si — {fs}i
9. If flip flops scanned in one iteration are fewer

than the maximum number to scan in an it-
eration then goto 7;

10. If the number of flip flops scanned are fewer
than the maximum number to scan then goto

1, otherwise end the Procedure;

Example 2: Consider the scan selection based on
valid state analysis of a circuit with 6 flip flops. Assume
that the S-graph of the circuit is as shown in Figure 2a)
and that the valid state set consists of 100000, 101001,
110010, 111110 . Figure 2b) shows the subsets formed
from the S-graph. According to the 4 valid state set,
the number of partial valid states for subsets {1, 2, 3},
{1, 2}, {2, 3}, {4, 5, 6} are 4, 2, 4, and 4 respectively.
Testability measures for flip flops 1 -6 computed using
equation 2 are:

T()=%-1+4%-1=2
T2)=8-1+4-1+4-1=2
T@)=58-1+4-1=1

TA4)=T(5)=T®6)=%-1=1

TIP measures for nodes 1-6 computed using equation
3 are as follows:

TIP(1)=1x3+1%2=35
TIP(2) =1%3+1%2+0%2=5
TIP(3)=1+3+0x2=3

TIP(4) =TIP(5)=TIP(6)=1+x3=3

Either flip flop 1 or 2 is selected based on their con-
nectivities. Flip flops with the same TIP measures are
selected by comparing the number of fan-outs first, and
then the number of fan-ins of each of the flip flops. As-
suming that flip flop 2 is selected, the subsets are then
modified to {1, 3}, {1}, {3}, {4, 5, 6}. Logic simulation
is then performed to observe the effect of scanning flip
flop 2, and TIP measures for the remaining flip flops
are recomputed in the next iteration.
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4 Results

In this section we show how changing the target bro-
ken size affects the selection, and compare the perfor-
mance of our scan selection method versus Opus [12].
The scan selection tool, ZScan was implemented in
C. Experiments are performed on the ISCAS89, IS-
CAS93 sequential benchmark circuits and some syn-
thesized circuits. A brief description of the synthesized
circuits is as follows: am2910 is a 12-bit microprogram
sequencer; mult16 is a 16-bit 2’s complement shift-and-
add multiplier; div16 is a 16-bit divider which performs
division by repeated subtractions; gcd is a circuit which
finds the greatest common divisor of two 16-bit num-
bers; and barcode is a barcode reader. ged and bar-
code are synthesized versions of the circuits given in
the HLSynth95 benchmark suite.

Table 1 illustrates the loss of information in break-
ing large subsets into smaller sized subsets. In this
experiment, HITEC was run for a time limit of 5 sec-
onds with a backtrack limit of 100000 per fault. Logic
simulation was performed for 300 time steps, in each
iteration. Unscanned refers to the original circuit,
Not Broken to the scanned circuit, when subsets
are not broken. The other two columns refer to the
scanned circuits when the target subset size(Tgt Sbst
Sz) is as shown. #FF refers to the number of flip
flops in the circuit, #SFF is the number of flip flops
which are scanned, FC refers to the Fault Coverage

(FC = Detected Faulis) 5nq TE is the Test Genera-

Total Foulls I pvected Faults+Untestable Fault
3 — erecte auils nrestabdie auits
tor Efficiency (TE = AT T )

of the generated test vectors. When the target subset
size for the broken cycles is small, then the selection
method can prematurely declare the circuit to be fully
testable. In $420.1, there is an acyclic sub-circuit of 16
flip flops with self loops. For a target subset size of 10
- the acyclic circuit is broken into two subsets of size
8 each, thus introducing inaccuracy. For s838.1, the
loss of accuracy is observed across the unbroken sub-
sets versus both of the broken subsets selection. On
reducing the target broken subset size, the number of
flip flops selected are fewer and the testability obtained
is also lower.

Table 2 compares the Original circuit, which refers
to the unscanned circuit, with the scanned circuit ob-
tained using Opus, and the scanned circuit obtained
using ZScan. HITEC is run for a up to 50s per fault
and a backtrack limit of 1,000,000 for the smaller cir-
cuits. Circuits marked with a (*) in the table, are run
for 5 seconds per fault and a backtrack limit of 100,000.
Qur experiments were performed on a HP9000-J200
workstation with 256 MB of memory.

Opus uses heuristics to find a close to minimal sub-
set of flip flops for cutting all cycles in a circuit. After




Table 1: Loss of information due to breaking large subsets:

Circuit Unscanned Not Broken Tgt Sbst Sz = 12 | Tgt Sbst Sz = 10
#FF | FC(TE) | #SFF | FC(TE) | #SFF | FC(TE) #SFF | FC(TE)

5420.1 16 | 41.3(99.7) 16 | 100(100) 15 | 95.6(100) 9| 28.4(92.1)

5838.1 32 | 29.6(83.2) 32 | 100(100) 29 | 53.7(99.4) 29 | 53.7(99.4)

cutting all cycles it uses a SCOAP based measure to
scan additional flip flops. To make a fair comparison
with Opus, we scan the maximum of the number of flip
flops required for complete cycle cutting or the number
of flip flops scanned by ZScan. The time for scanning
using Opus is at most 830 seconds for s38417, being
lesser than 5 seconds for most circuits.

We compare the two selections by first comparing
the test generator efficiency. If the test generator ef-
ficiency is 100%, then we compare the number of flip
flops scanned. If the test generator efficiencies are the
same but lower than 100%, then the fault coverages are
compared second, followed by the number of flip flops
scanned. The results in bold indicate better perfor-
mance. The parameters used for ZScan are as follows:
logic simulation is performed for 200 time steps be-
tween iterations; large subsets are broken into smaller
sizes(target size being 12); the dynamic heuristic is
used to find the number of flip flops to scan within
each iteration; the user limit given for the flip flops is
the maximum possible(i.e. the number of flip flops in
the circuit). 1196, s1238 from ISCAS89 and s1196.1
from ISCAS93 have been excluded since no flip flops
are scanned from these circuits.

For circuits s298, s526 and s4863 a number of flip
flops are scanned from the acyclic part without im-
proving the coverage significantly. Even if we were
to avoid scanning acyclic subsets in the circuits, we
can obtain 100% test generator efficiency for these cir-
cuits. There is a self loop based subset of size 11 in
s298, which does not have many states reachable dur-
ing logic simulation. Nine elements from this subset
are selected from scan even though it does not con-
tribute to test generation complexity. The flip flops in
this subset are loosely connected to each other. This
indicates that the heuristic used to form acyclic sub-
sets can be made sophisticated to target different the
kind of structures and avoid others. It also indicates
that the states reachable using logic simulation are an
approximate indicator of test generator efficiency.

The test generator efficiency reported for most of
the circuits is near 100%. 25 of the 43 benchmark
circuits with ZScan give 100% test generator efficiency;
11 scanned circuits give greater than 99% efficiency;
with all other circuits except 3330, s3384 and s35854
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having an test generator efficiency of 95% or greater.
Though these three circuits do not achieve high test
efficiency for ZScan, the testability is similar to Opus.
This indicates that the number of flip flops scanned is
far fewer than those required for high coverage. This
can be because of breaking large subsets into smaller
sizes. We also may have to target structures other than
cycles and self loop based sub-circuits to achieve higher
coverage.

From the ISCAS89 benchmarks, which are listed
first in Table 2, ZScan performs better than Opus for
20 out of 25 circuits; has comparable results for 6 cir-
cuits and performs worse than Opus for s15850.1. ZS-
can obtains slightly less coverage for these circuits, but
it provides an end point which tells the tool to stop
scanning. Complete cycle cutting in Opus scans fewer
number of flip flops and obtains much lower fault cov-
erage and test generator efficiency for s1423, s5378,
$9234, s13207.1, s15850.1 and s38417.

For the ISCAS93 benchmarks, ZScan performs bet-
ter for 6 out of 12 circuits, gives comparable results
for 3 circuits, and is worse for 3 circuits when com-
pared with Opus. s991 has a flip flop with a self loop
which is not affected by any other node in the S-graph.
This flip flop just toggles on the application of a clock,
however during test generation this flip flop is unini-
tializable. Opus gives extremely low coverage for this
circuit because it ignores such structures.

For the synthesized circuits, ZScan performs better
for 1 of the 5 circuits, gives comparable results for an-
other circuit, and performs worse for 3 other circuits.
The S-graph of ged contains a clique of size 33, and enu-
merating all the cycles in the clique is exponential in
complexity. The approximate cycle enumeration, and
the breaking of subsets introduces some inaccuracy in
the selection.

The selection times for most circuits are small ex-
cept for some of the larger circuits. These times how-
ever are a small fraction of the total test generation
time required for the original circuits, which can be
of the order of tens of hours without providing a high
coverage.

We also compare our results with Opscan [15]. Op-
scan does not provide results for large circuits in both
the ISCAS89 and ISCAS93 benchmark suites, since it



is not scalable to large circuits. For the table reporting
test generation results, we obtain higher test genera-
tor efficiency in 5 circuits, lower efficiency in 1 circuit
and the same in all other 23 circuits reported. The
aggregate number of flip flops scanned (except $35932
because it is misleading, since it is fully testable prior
to scan) is 275 versus 230 scanned by Opscan. The
selection times (except s35932) for both methods are
also comparable. This illustrates that in-spite of using
subsets as a basis for selection (i.e. not declaring cycles
to be fully testable when a cycle is broken) we do not
scan significantly more flip flops in the smaller circuits.
For 5378, we scan just 48 flip flops compared to 80 for
Opscan to obtain the same test generator efficiency.

5 Conclusions

In this paper, we have introduce an approach to
increase the low fault coverage and test generation ef-
ficiency of large circuits scanned using cycle cutting
based approaches. Our approach targets two limita-
tions of previous schemes: cycles which have been cut,
and sub-circuits consisting of flip flops with self loops.
Flip flop subsets are formed based on cycles and flip
flops with self loops in a circuit. Subsequently, a testa-
bility measure based on valid states is used to select
scan flip flops from these subsets. Logic simulation is
used to estimate the number of valid states for the cir-
cuit. An iterative procedure performs logic simulation
and scan selection, until the testability of the circuit
cannot be improved. An algorithm, which finds the
number of flip flops to scan in an iteration, is given
to speed up the selection of scan flip flops. Experi-
mental results show that the approach is scalable to
large circuits. For small circuits, 100% test generation
efficiency is reached by scanning fewer flip flops than
those required for minimal cycle cutting. A test gener-
ator efficiency of near 100% is achieved for most other
benchmark circuits within reasonable time.
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Table 2: Comparison of fault coverage and test generator efficiency for scanned benchmark circuits

Circuit Original Opus ZScan
#FF FC(TE) | #SFF FC(TE) | #SFF FC(TE) | Scan Time | ATG Time
5298 14 | 86.4(94.4) 10 100(100) 10 99.4(100) 8.6s 0.7s
5344 15 ] 95.9(99.1) 5 99.4(100) 5 98.8(100) 7.68 1s
§349 15 | 95.6(99.4) 5 98.9(100) 4 98.3(100) 5.9s 1s
$382 21 | 90.9(92.9) 9 08.8(100) 6 99.3(100) 8.8s 0.9s
5386 6 | 81.7(100) 5 100(100) 4 100(100) 3.3s 1.2s
s400 21 | 89.9(93.4) 9 97.4(100) 5 97.6(100) 5.4s 3.8s
5420.1 16 | 41.3(99.7) 16 100(100) 16 100(100) 19.2s 1.3s
s444 21 | 87.3(92.4) 9 96.0(100) 6 96.0(100) 9.2 1.8s
8510 6 0(100) 5 100(100) 3 99.3(100) 2.8s 10.7s
5526 21 | 65.7(69.0) 15 99.6(100) 15 98.7(100) 17.2s - 3.7s
s641 19 | 86.5(100) 7 94.7(100) 7 99.4(100) 18s 3.7s
s713 19 | 81.9(100) 7 88.5(100) 7 92.9(100) 13.6s 8.4s
s820 5 | 95.6(99.4) 4 99.8(99.8) 2 100(100) 3.2s 8.1s
s832 5 1 93.9(99.4) 4 98.4(100) 2 98.4(100) 3.1s 10.7s
$838.1 32| 29.6(83.2) 30 39.5(99.5) 29 | 53.7(99.9) 83s 1900s
$953 29 8.2(100) 5 100(100) 3 100(100) 5.5s 12.6s
$1423 T4 | 36.6(37.3) 41 96.2(97.1) 41 | 97.9(98.8) 716s 1212s
s1488 6 | 97.0(100) 5 100(100) 2 99.9(100) 7.2s 44.6s
$1494 6 | 96.4(100) 5 99.2(100) 2 99.1(100) 7.3s 38.2s
s5378 179 | 70.2(73.8) 48 93.9(99.9) 48 | 97.1(99.9) 332s 415s
s9234 | 2111 9.3(14.1) 97 90.5(96.2) 97 | 90.5(96.3) 11.6hrs 4.48hrs
$13207.1 638 | 9.2(88.5) 160 90.5(96.6) 160 | 94.3(97.7) 4.72hrs 4.8hrs
s15850.1 534 | 35.4(44.1) 296 | 94.8(99.9) 296 | 95.2(99.6) 27.2hrs 1.08hrs
$35932 | 1728 | 89.1(99.3) 306 89.8(100) 232 89.8(100) 12.9hrs 35658
$38417* | 1636 3.6(4.4) 516 84.7(85.5) 516 | 84.0(90.2) 8.2hrs 7.8hrs
s499 22 0(44.9) 22 100(100) 22 100(100) 255s 1.5s
8635 32 0(99.1) 31 99.9(100) 31 99.4(100) 73.3s 2.1s
$938 32 | 5.2(60.8) 30 74.0(99.4) 30 | 56.4(99.5) 82s 335s
s967 29 | 7.13(100) 5 100(100) 4 100(100) 4.7s 3.7s
$991 19 0(100) 7 3.2(100) 7 99.9(100) 24s 2.2s
s1269 37 | 17.9(58.7) 7 79.8(96.1) 71 99.8(99.9) 12s 82s
51512 57 | 4.9(96.2) 29 100(100) 29 | 99.9(99.9) 236s 1466s
$3271 116 | 98.2(98.3) 26 | 99.9(100) 26 | 98.9(99.0) 49s 1941s
53330 132 | 72.9(73.9) 7| 82.8(84.1) 7| 81.7(82.4) 39s 2961s
53384 183 | 88.6(88.6) 19 88.6(88.6) 19 | 89.5(89.5) 229s 5.61hrs
54863 104 | 96.2(96.4) 40 100(100) 40 99.9(100) 204s 117s
s6669 50 | 99.5(99.5) 17 99.6(99.6) 7| 99.8(99.9) 40s 780s
am2910 87 | 89.2(96.3) 25 91.1(98.4) 3 | 92.8(99.6) 8.8s 1898s
div16 50 | 78.0(84.3) 18 | 91.6(98.0) 18 | 91.4(97.8) 280s 1.25hrs
multl6 55 | 87.2(88.0) 19 | 99.77(100) 19 | 99.4(99.8) 94.3s 175s
barcode 46 | 53.7(54.6) 27 99.8(100) 27 99.5(100) 638s 108s
ged 49 | 82.6(82.7) 32 | 98.6(98.7) 24 | 94.9(95.0) 153s 1.78hrs
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